north brazil current
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Léa Olivier ◽  
Jacqueline Boutin ◽  
Gilles Reverdin ◽  
Nathalie Lefèvre ◽  
Peter Landschützer ◽  
...  

2021 ◽  
Author(s):  
Léa Olivier ◽  
Jacqueline Boutin ◽  
Gilles Reverdin ◽  
Nathalie Lefèvre ◽  
Peter Landschützer ◽  
...  

Abstract. The North Brazil Current (NBC) flows northward across the Equator, passes the mouth of the Amazon River, and forms large oceanic eddies near 8° N. We investigate the processes driving the variability of air-sea CO2 fluxes at different scales in early 2020 in the region [50° W–59° W–5° N–16° N]. This region is a pathway between the equatorial and North Atlantic Ocean and was surveyed during the EUREC4A-OA/ATOMIC campaign. In-situ surface fugacity of CO2 (fCO2), salinity and temperature combined with maps of satellite salinity, chlorophyll-a and temperature highlight contrasting properties in the region. In February 2020, the area is a CO2 sink (−1.7 TgC.month−1), previously underestimated by a factor 10. The NBC rings transport saline and high fCO2 water indicative of their equatorial origins and are a small source of CO2 at regional scale. Their main impact on the variability of biogeochemical parameters is through the filaments they entrain into the open ocean. During the campaign, a nutrient-rich freshwater plume from the Amazon River is entrained from the shelf up to 12° N and caused a phytoplankton bloom leading to a significant carbon drawdown (~20 % of the total sink). On the other hand, saltier filaments of shelf water rich in detrital material act as strong local sources of CO2. Spatial distribution of fCO2 is therefore strongly influenced by ocean dynamics south of 12° N. The less variable North Atlantic subtropical water extends from Barbados northward. They represent ~60 % of the total sink due to their lower temperature associated with winter cooling and strong winds.


2021 ◽  
Vol 51 (6) ◽  
pp. 2049-2067
Author(s):  
Fraser W. Goldsworth ◽  
David P. Marshall ◽  
Helen L. Johnson

AbstractThe upper limb of the Atlantic meridional overturning circulation draws waters with negative potential vorticity from the Southern Hemisphere into the Northern Hemisphere. The North Brazil Current is one of the cross-equatorial pathways in which this occurs: upon crossing the equator, fluid parcels must modify their potential vorticity to render them stable to symmetric instability and to merge smoothly with the ocean interior. In this work a linear stability analysis is performed on an idealized western boundary current, dynamically similar to the North Brazil Current, to identify features that are indicative of symmetric instability. Simple two-dimensional numerical models are used to verify the results of the stability analysis. The two-dimensional models and linear stability theory show that symmetric instability in meridional flows does not change when the nontraditional component of the Coriolis force is included, unlike in zonal flows. Idealized three-dimensional numerical models show anticyclonic barotropic eddies being spun off as the western boundary current crosses the equator. These eddies become symmetrically unstable a few degrees north of the equator, and their PV is set to zero through the action of the instability. The instability is found to have a clear fingerprint in the spatial Fourier transform of the vertical kinetic energy. An analysis of the water mass formation rates suggest that symmetric instability has a minimal effect on water mass transformation in the model calculations; however, this may be the result of unresolved dynamics, such as secondary Kelvin–Helmholtz instabilities, which are important in diabatic transformation.


2021 ◽  
Author(s):  
Kimberley Drouin ◽  
M Susan Lozier ◽  
F Javier Beron-Vera ◽  
Phillip Miron ◽  
M Josefina Olascoaga

<p>The North Brazil Current is considered a bottleneck in the South Atlantic, responsible for funneling upper-ocean waters into the North Atlantic. This work explores the surface and subsurface pathways that connect the North Brazil Current to the RAPID line. To that extent, observational trajectories from surface drifters and Argo floats are used in conjunction with Markov chain theory and tools from dynamical systems analysis to compute probable pathways. More specifically, these pathways are computed as ensembles of paths transitioning directly between the North Brazil Current and the RAPID line. In addition, simulated trajectories will be used (1) to assess how representative the two-dimensional observational trajectories are of the three-dimensional circulation, and (2) to compute the associated volume transport of different pathways. Preliminary results suggest that two dominant pathways connect the North Brazil Current and the RAPID line. First, is the traditional pathway through the Caribbean Sea and Gulf of Mexico, which carries waters to the Florida Current, and second is a more direct route east of the Caribbean that supplies waters to the Antilles Current and the basin interior.  </p>


2021 ◽  
Author(s):  
Anna Olivé Abelló ◽  
Josep L. Pelegrí ◽  
Ignasi Vallès-Casanova

<p>The Atlantic Meridional Overturning Circulation (AMOC), a key component of the Earth's climate system, is sustained through the northward transport of Southern Ocean waters to high latitudes. This returning limb of the AMOC consists largely of relatively cold waters entering from the Pacific Ocean through the Drake Passage, what is commonly referred to as cold-water route. Here, we explore the pathways and transit times of these Antarctic waters that are incorporated to the South Atlantic, with special attention to their recirculation in the subtropical gyre and their escape northward through the North Brazil Current. For this purpose, we use daily values of the climatological GLORYS12v1 velocity field, as obtained using data for 2002-2018 and track the trajectories with the help of the OceanParcels software. We trace the particles transiting through four sections in the Southern and South Atlantic Oceans: 64°W and 27°E, crossing entire Antarctic Circumpolar Current (ACC) through the Drake Passage and off South Africa, respectively; 32°S, from the African coast out to 5°S, sampling the eastern boundary current system; and 21°S, from the American coast out to 30°W, sampling the North Brazil Current.</p><p>Particles are released daily in the Drake Passage down to 1800 m during one full year, its spatial distribution and number being proportional to the transport crossing each vertical portion of the section. This represents an annual-mean of 116.3 Sv entering the Atlantic sector through the Drake Passage, split into 13.3 Sv for surface (Subantarctic Surface Water, SASW, and Subantarctic Mode Water, SAMW), 40.2 Sv for intermediate (Antarctic Surface Water, AASW, and Antarctic Intermediate Water, AAIW) and 62.8 Sv for deep (Upper Circumpolar Deep Water, UCDW) water masses. The particles are then tracked forward, with a one-day resolution, during 20 years. The simulation shows that about 83% of the SASW/SAMW transport follow the ACC past South Africa while the remaining 17% are incorporated to the subtropical gyre. Among the latter, only 13% veer northward and cross the 21°S section. Regarding the intermediate waters, AASW/AAIW, 93% of transport follows the ACC, and 7% join the subtropical gyre. Finally, for the UCDW transport, which remains part of ACC, about 97% follow eastward as the ACC and only 3% drift cross the 32°S section, and only 4% of the latter reach through the 21°S section. The median times for the Drake Passage water particles to get to the 27°E, 32°S and 21°S sections are: 1.7, 2.1 and 5.7 yr for the SASW/SAMW; 2.3, 5.3 and 6.5 yr for the AASW/AAIW; and 3.3, 6.0 and 11.7 yr for the UCDW, respectively. Long tails in the age distributions reflect a high degree of recirculation, being remarkable the high presence of mesoscale eddies around 32°S over Cape Basin.</p>


2021 ◽  
Author(s):  
Fraser Goldsworth ◽  
David Marshall ◽  
Helen Johnson

<p>The upper limb of the Atlantic Meridional Overturning Circulation draws waters with negative potential vorticity from the southern hemisphere into the northern hemisphere. The North Brazil Current is one of the cross-equatorial pathways in which this occurs. It is known that upon crossing the equator fluid parcels within this current must modify their potential vorticity, to render them stable to symmetric (inertial) instability and to merge smoothly with the ocean interior.</p><p>A hierarchy of models predict the excitement of inertial instability in cross-equatorial flows dynamically similar to the North Brazil Current. A linear stability analysis of a barotropic flow is able to predict the structure and growth rate of the instability. A two-dimensional numerical model verifies these predictions and shows how the instability is able to stabilise unstable potential vorticity configurations. A simplified three-dimensional model demonstrates how large anti-cyclonic rings spun up at the equator entrain waters with negative PV, before the rings themselves become inertially unstable. The high-resolution, observationally constrained, MITgcm LLC4320 model is probed for signs of this instability process.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Iury T. Simoes-Sousa ◽  
Ilson Carlos A. Silveira ◽  
Amit Tandon ◽  
Glenn R. Flierl ◽  
Cesar H. A. Ribeiro ◽  
...  

We explore the Barreirinhas Eddies, submesoscale vortices generated by the North Brazil Current (NBC) off the Barreirinhas Bight (Brazil, centered at 1.75°S), using vessel-mounted and moored ADCP data, and a Global HYCOM reanalysis. These double-stacked anticyclones with incredibly high Rossby Number O (10)] occur independently at different depths (high Burger number). Anticyclones with Rossby number greater than unity are unstable according to inviscid linear theory, and hence these submesoscale features are not easily observable at mid latitudes. At these low latitudes, they last about a week, allowing characterization by oceanographic surveys. Our analyses suggest this increased stability is due to the joint effect of strong winds, stratification, proximity to the equator, and topography. Heretofore hypothesized via analytical studies and seen in numerical models, our study confirms this stabilization process in observations, and is also a starting point for the description of the submesoscale dynamics in the NBC domain.


2020 ◽  
Vol 101 (6) ◽  
pp. E744-E762 ◽  
Author(s):  
C. L. Gentemann ◽  
Joel P. Scott ◽  
Piero L. F. Mazzini ◽  
Cassia Pianca ◽  
Santha Akella ◽  
...  

Abstract From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.


Sign in / Sign up

Export Citation Format

Share Document