scholarly journals Snow cover variability across glaciers in Nordenskiöldland (Svalbard) from point measurements in 2014–2016

Author(s):  
Marco Möller ◽  
Rebecca Möller

Abstract. Snow depths and bulk densities of the annual snow layer were measured at 69 different locations on glaciers across Nordenskiöldland, Svalbard, during the spring seasons of the period 2014–2016. Sampling locations lie along nine transects extending over 17 individual glaciers. Several of the locations were visited repeatedly, leading to a total of 109 point measurements, on which we report in this study. Snow water equivalents were calculated for each point measurement. In the dataset, snow depth and density measurements are accompanied by appropriate uncertainties which are rigorously transferred to the calculated snow water equivalents using a straightforward Monte Carlo simulation-style procedure. The final dataset can be downloaded from the Pangaea data repository (https://www.pangaea.de; https://doi.org/10.1594/PANGAEA.896581). Snow cover data indicate a general and statistically significant increase of snow depths and water equivalents with terrain elevation. A significant increase of both quantities with decreasing distance towards the east coast of Nordenskiöldland is also evident, but shows distinct interannual variability. Snow density does not show any characteristic spatial pattern.

2015 ◽  
Vol 46 (4) ◽  
pp. 494-506 ◽  
Author(s):  
Oddbjørn Bruland ◽  
Åshild Færevåg ◽  
Ingelin Steinsland ◽  
Glen E. Liston ◽  
Knut Sand

Snow density is an important measure in hydrology used to convert snow depth to the snow water equivalent (SWE). A model developed by Sturm, Tara and Liston predicts the snow density by using snow depth, the snow age and a snow class defined by the location. In this work this model is extended to include location and seasonal weather-specific variables. The model is named Weather Snow Density Model (Weather SDM). A Bayesian framework is chosen, and the model is fitted to and tested for 4,040 Norwegian snow depth and densities measurements between 1998 and 2011. The final model improved the snow density predictions for the Norwegian data compared to the model of Sturm by up to 50%. Further, the Weather SDM is extended to utilize local year-specific snow density observations (Weather&ObsDensity SDM). This reduced the prediction error an additional 16%, indicating a significant improvement when utilizing information provided by annual snow density measurements.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


1980 ◽  
Vol 11 (5) ◽  
pp. 235-242 ◽  
Author(s):  
Esko Kuusisto

About 96,000 snow depth and 17,000 snow density measurements were used to study the most widely used variable in snowmelt forecasting, the degree-day factor. This data was collected on 12 stake stations each with 25 stakes in forest and 9 on open field during 1959 to 1978. The seasonal averages of degree-day factor are studied; they vary rather widely from station to station. The average for all forest sites is 2.42 mm°dC−1d−1 and for all open sites 3.51 mm°C−1d−1. A 10 per cent increase of canopy cover in forest decreases the degree-day factor on the average by 0.16 mm°C−1d−1. On rainy pentades the degree-day factor is larger especially in forest sites. Finally, the seasonal course of the degree-day factor and its dependance on snow density are discussed.


2021 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Pinja Venalainen ◽  
...  

<p>The European Space Agency Snow CCI+ project provides global homogenized long time series of daily snow extent and snow water equivalent (SWE). The Snow CCI SWE product is built on the Finish Meteorological Institute's GlobSnow algorithm, which combines passive microwave data with in situ snow depth information to estimate SWE. The CCI SWE product improves upon previous versions of GlobSnow through targeted changes to the spatial resolution, ancillary data, and snow density parameterization.</p><p>Previous GlobSnow SWE products used a constant snow density of 0.24 kg m<sup>-3</sup> to convert snow depth to SWE. The CCI SWE product applies spatially and temporally varying density fields, derived by krigging in situ snow density information from historical snow transects to correct biases in estimated SWE. Grid spacing was improved from 25 km to 12.5 km by applying an enhanced spatial resolution microwave brightness temperature dataset. We assess step-wise how each of these targeted changes acts to improve or worsen the product by evaluating with snow transect measurements and comparing hemispheric snow mass and trend differences.</p><p>Together, when compared to GlobSnow v3, these changes improved RMSE by ~5 cm and correlation by ~0.1 against a suite of snow transect measurements from Canada, Finland, and Russia. Although the hemispheric snow mass anomalies of CCI SWE and GlobSnow v3 are similar, there are sizeable differences in the climatological SWE, most notably a one month delay in the timing of peak SWE and lower SWE during the accumulation season. These shifts were expected because the variable snow density is lower than the former fixed value of 0.24 kg m<sup>-3</sup> early in the snow season, but then increases over the course of the snow season. We also examine intermediate products to determine the relative improvements attributable solely to the increased spatial resolution versus changes due to the snow density parameterizations. Such systematic evaluations are critical to directing future product development.</p>


1989 ◽  
Vol 13 ◽  
pp. 154-158 ◽  
Author(s):  
Jan Otto Larsen ◽  
Jens Laugesen ◽  
Krister Kristensen

Snow-pressure measurements have been carried out on two masts at the NGI avalanche station in Grasdalen, western Norway. These two tubular masts have diameters of 0.22 and 0.42 m, respectively, and are situated on a 25° slope with a deep snow cover. The most important conclusions are that within a homogeneous snow-pack there is a close correlation between snow-creep pressure and the product of acceleration due to gravity, g, density, ρ, and snow depth, H, that the highest pressures are recorded in late winter when the snow-pack is at the 0°C isothermal, and finally that a weak 0° C isothermal snow layer at ground level appears to increase snow pressure.


2008 ◽  
Vol 9 (6) ◽  
pp. 1416-1426 ◽  
Author(s):  
Naoki Mizukami ◽  
Sanja Perica

Abstract Snow density is calculated as a ratio of snow water equivalent to snow depth. Until the late 1990s, there were no continuous simultaneous measurements of snow water equivalent and snow depth covering large areas. Because of that, spatiotemporal characteristics of snowpack density could not be well described. Since then, the Natural Resources Conservation Service (NRCS) has been collecting both types of data daily throughout the winter season at snowpack telemetry (SNOTEL) sites located in the mountainous areas of the western United States. This new dataset provided an opportunity to examine the spatiotemporal characteristics of snowpack density. The analysis of approximately seven years of data showed that at a given location and throughout the winter season, year-to-year snowpack density changes are significantly smaller than corresponding snow depth and snow water equivalent changes. As a result, reliable climatological estimates of snow density could be obtained from relatively short records. Snow density magnitudes and densification rates (i.e., rates at which snow densities change in time) were found to be location dependent. During early and midwinter, the densification rate is correlated with density. Starting in early or mid-March, however, snowpack density increases by approximately 2.0 kg m−3 day−1 regardless of location. Cluster analysis was used to obtain qualitative information on spatial patterns of snowpack density and densification rates. Four clusters were identified, each with a distinct density magnitude and densification rate. The most significant physiographic factor that discriminates between clusters was proximity to a large water body. Within individual mountain ranges, snowpack density characteristics were primarily dependent on elevation.


2013 ◽  
Vol 7 (3) ◽  
pp. 2943-2977
Author(s):  
G. A. Sexstone ◽  
S. R. Fassnacht

Abstract. This study uses a combination of field measurements and Natural Resource Conservation Service (NRCS) operational snow data to understand the drivers of snow water equivalent (SWE) spatial variability at the basin scale. Historic snow course snowpack density observations were analyzed within a multiple linear regression snow density model to estimate SWE directly from snow depth measurements. Snow surveys were completed on or about 1 April 2011 and 2012 and combined with NRCS operational measurements to investigate the spatial variability of SWE. Bivariate relations and multiple linear regression models were developed to understand the relation of SWE with terrain and canopy variables (derived using a geographic information system (GIS)). Calculation of SWE directly from snow depth measurement using the snow density model has strong statistical performance and model validation suggests the model is transferable to independent data within the bounds of the original dataset. This pathway of estimating SWE directly from snow depth measurement is useful when evaluating snowpack properties at the basin scale, where many time consuming measurements of SWE are often not feasible. During both water year (WY) 2011 and 2012, elevation and location (UTM Easting and UTM Northing) were the most important model variables, suggesting that orographic precipitation and storm track patterns are likely consistent drivers of basin scale SWE variability. Terrain characteristics, such as slope, aspect, and curvature, were also shown to be important variables, but to a lesser extent at the scale of interest.


2014 ◽  
Vol 10 (2) ◽  
pp. 145-160
Author(s):  
Katarína Kotríková ◽  
Kamila Hlavčová ◽  
Róbert Fencík

Abstract An evaluation of changes in the snow cover in mountainous basins in Slovakia and a validation of MODIS satellite images are provided in this paper. An analysis of the changes in snow cover was given by evaluating changes in the snow depth, the duration of the snow cover, and the simulated snow water equivalent in a daily time step using a conceptual hydrological rainfall-runoff model with lumped parameters. These values were compared with the available measured data at climate stations. The changes in the snow cover and the simulated snow water equivalent were estimated by trend analysis; its significance was tested using the Mann-Kendall test. Also, the satellite images were compared with the available measured data. From the results, it is possible to see a decrease in the snow depth and the snow water equivalent from 1961-2010 in all the months of the winter season, and significant decreasing trends were indicated in the months of December, January and February


2019 ◽  
Author(s):  
Abbas Fayad ◽  
Simon Gascoin

Abstract. In many Mediterranean mountain regions, the seasonal snowpack is an essential yet poorly known water resource. Here, we examine, for the first time, the spatial distribution and evolution of the snow water equivalent (SWE) during three snow seasons (2013–2016) in the coastal mountains of Lebanon. We run SnowModel (Liston and Elder, 2006a), a spatially-distributed, process-based snow model, at 100 m resolution forced by new automatic weather station (AWS) data in three snow-dominated basins of Mount Lebanon. We evaluate a recent upgrade of the liquid water percolation scheme in SnowModel, which was introduced to improve the simulation of the snow water equivalent (SWE) and runoff in warm maritime regions. The model is evaluated against continuous snow depth and snow albedo observations at the AWS, manual SWE measurements, and MODIS snow cover area between 1200 m and 3000 m a.s.l.. The results show that the new percolation scheme yields better performance especially in terms of SWE but also in snow depth and snow cover area. Over the simulation period between 2013 and 2016, the maximum snow mass was reached between December and March. Peak mean SWE (above 1200 m a.s.l.) changed significantly from year to year in the three study catchments with values ranging between 73 mm and 286 mm we (RMSE between 160 and 260 mm w.e.). We suggest that the major sources of uncertainty in simulating the SWE, in this warm Mediterranean climate, can be attributed to forcing error but also to our limited understanding of the separation between rain and snow at lower-elevations, the transient snow melt events during the accumulation season, and the high-variability of snow depth patterns at the sub-pixel scale due to the wind-driven blown-snow redistribution into karstic features and sinkholes. Yet, the use of a process-based snow model with minimal requirements for parameter estimation provides a basis to simulate snow mass SWE in non-monitored catchments and characterize the contribution of snowmelt to the karstic groundwater recharge in Lebanon. While this research focused on three basins in the Mount Lebanon, it serves as a case study to highlight the importance of wet snow processes to estimate SWE in Mediterranean mountain regions.


Sign in / Sign up

Export Citation Format

Share Document