scholarly journals A first investigation of hydrogeology and hydrogeophysics of the Maqu catchment in the Yellow River source region

2020 ◽  
Author(s):  
Mengna Li ◽  
Yijian Zeng ◽  
Maciek W. Lubczynski ◽  
Jean Roy ◽  
Lianyu Yu ◽  
...  

Abstract. The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Detailed knowledge of its hydrogeology is paramount to enable the understanding of groundwater dynamics, which plays a vital role in headwater areas like the Tibetan Plateau. Nevertheless, due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. In this study, borehole core lithology analysis, altitude survey, soil thickness measurement, hydrogeological survey, and hydrogeophysical surveys (e.g., Magnetic Resonance Sounding – MRS, Electrical Resistivity Tomography – ERT, and Transient Electromagnetic – TEM) were conducted in the Maqu catchment within the Yellow River Source Region (YRSR). The soil thickness measurements were done in the western mountainous area of the catchment, where hydrogeophysical surveys were difficult to be carried out. The results indicate soil thicknesses are within 1.2 m in most cases, and the soil thickness decreases as the slope increases. The hydrogeological survey reveals that groundwater flows from the west to the east, recharging the Yellow River. The hydraulic conductivity ranges from 0.2 m/d to 12.4 m/d. The MRS soundings results, i.e., water content and hydraulic conductivity, confirmed the presence of unconfined aquifer in the flat eastern area. The depth of the Yellow River deposits was derived at several places in the flat eastern area based on TEM results. These survey data and results can be used to develop integrated hydrological modeling and water cycle analysis to improve a full–picture understanding of the water cycle at the Maqu catchment in the YRSR. The raw data set is freely available at https://doi.org/10.17026/dans-z6t-zpn7 (Li et al., 2020).

2021 ◽  
Vol 13 (10) ◽  
pp. 4727-4757
Author(s):  
Mengna Li ◽  
Yijian Zeng ◽  
Maciek W. Lubczynski ◽  
Jean Roy ◽  
Lianyu Yu ◽  
...  

Abstract. The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Detailed knowledge of its hydrogeology is paramount to enable the understanding of groundwater dynamics, which plays a vital role in headwater areas like the Tibetan Plateau. Nevertheless, due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. In this study, borehole core lithology analysis, soil thickness measurement, an altitude survey, hydrogeological surveys, and hydrogeophysical surveys (e.g. magnetic resonance sounding – MRS, electrical resistivity tomography – ERT, and transient electromagnetic – TEM) were conducted in the Maqu catchment within the Yellow River source region (YRSR). The hydrogeological surveys reveal that groundwater flows from the west to the east, recharging the Yellow River. The hydraulic conductivity ranges from 0.2 to 12.4 m d−1. The MRS sounding results, i.e. water content and hydraulic conductivity, confirmed the presence of an unconfined aquifer in the flat eastern area. Based on TEM results, the depth of the Yellow River deposits was derived at several places in the flat eastern area, ranging from 50 to 208 m. The soil thickness measurements were done in the western mountainous area of the catchment, where hydrogeophysical and hydrogeological surveys were difficult to be carried out. The results indicate that most soil thicknesses, except on the valley floor, are within 1.2 m in the western mountainous area of the catchment, and the soil thickness decreases as the slope increases. These survey data and results can contribute to integrated hydrological modelling and water cycle analysis to improve a full-picture understanding of the water cycle at the Maqu catchment in the YRSR. The raw dataset is freely available at https://doi.org/10.17026/dans-z6t-zpn7 (Li et al., 2020a), and the dataset containing the processed ERT, MRS, and TEM data is also available at the National Tibetan Plateau Data Center with the link https://doi.org/10.11888/Hydro.tpdc.271221 (Li et al., 2020b).


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lijuan Wen ◽  
Shihua Lv ◽  
Zhaoguo Li ◽  
Lin Zhao ◽  
Nidhi Nagabhatla

The Tibetan Plateau harbors thousands of lakes; however few studies focus on impacts of lakes on local climate in the region. To investigate and quantify impacts of the two biggest lakes (Ngoring Lake and Gyaring Lake) of the Yellow River source region in the Tibetan Plateau on local climate, two simulations (with and without the two large lakes) from May 2010 to July 2011 are performed and analyzed using the WRF-CLM model (the weather research and forecasting model coupled with the community land model). Differences between simulated results show that the WRF-CLM model could provide realistic reproduction of surface observations and has better simulation after considering lakes. Lakes mostly reduce the maximum temperature all year round and increase the minimum temperature except in March due to the large heat capacity that makes lakes absorb (release) more energy for the same temperature change compared to land. Lakes increase precipitation over the lake area and in the nearby region, mostly during 02–14 BT (Beijing Time) of July to October when the warm lake surface induces the low level horizontal convergence and updraft over lake and provides energy and vapor to benefit the development of the convection for precipitation.


2014 ◽  
Vol 81 (3) ◽  
pp. 538-544 ◽  
Author(s):  
Yibo Wang ◽  
Fujun Niu ◽  
Qingbai Wu ◽  
Zeyong Gao

AbstractMeasurements of 137Cs concentration in soils were made in a representative catchment to quantify erosion rates and identify the main factors involved in the erosion in the source region of the Yellow River in the Tibetan Plateau. In order to estimate erosion rates in terms of the main factors affecting soil loss, samples were collected taking into account the slope and vegetation cover along six selected transects within the Dari County catchment. The reference inventory for the area was established at a stable, well-preserved, site of small thickness (value of 2324 Bq·m− 2). All the sampling sites had been eroded and 137Cs inventories varied widely in the topsoil (14.87–25.56 Bq·kg− 1). The effective soil loss values were also highly variable (11.03–28.35 t·km− 1·yr− 1) in line with the vegetation cover change. The radiometric approach was useful in quantifying soil erosion rates and examining patterns of soil movement.


Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2243
Author(s):  
Mingyang Tian ◽  
Xiankun Yang ◽  
Lishan Ran ◽  
Yuanrong Su ◽  
Lingyu Li ◽  
...  

Under the context of climate change, studying CO2 emissions in alpine rivers is important because of the large carbon storage in these terrestrial ecosystems. In this study, riverine partial pressure of CO2 (pCO2) and CO2 emission flux (FCO2) in the Yellow River source region (YRSR) under different landcover types, including glaciers, permafrost, peatlands, and grasslands, were systematically investigated in April, June, August, and October 2016. Relevant chemical and environmental parameters were analyzed to explore the primary controlling factors. The results showed that most of the rivers in the YRSR were net CO2 source, with the pCO2 ranging from 181 to 2441 μatm and the FCO2 ranging from −50 to 1574 mmol m−2 d−1. Both pCO2 and FCO2 showed strong spatial and temporal variations. The highest average FCO2 was observed in August, while the lowest average was observed in June. Spatially, the lowest FCO2 were observed in the permafrost regions while the highest FCO2 were observed in peatland. By integrating seasonal changes of the water surface area, total CO2 efflux was estimated to be 0.30 Tg C year−1. This indicates that the YRSR was a net carbon source for the atmosphere, which contradicts previous studies that conclude the YRSR as a carbon sink. More frequent measurements of CO2 fluxes, particularly through several diel cycles, are necessary to confirm this conclusion. Furthermore, our study suggested that the riverine dissolved organic carbon (DOC) in permafrost (5.0 ± 2.4 mg L−1) is possibly derived from old carbon released from permafrost melting, which is equivalent to that in peatland regions (5.1 ± 3.7 mg L−1). The degradation of DOC may have played an important role in supporting riverine CO2, especially in permafrost and glacier-covered regions. The percent coverage of corresponding land cover types is a good indicator for estimating riverine pCO2 in the YRSR. In view of the extensive distribution of alpine rivers in the world and their sensitivity to climate change, future studies on dynamics of stream water pCO2 and CO2 outgassing are strongly needed to better understand the global carbon cycle.


2018 ◽  
Vol 246 ◽  
pp. 01089
Author(s):  
Yongqiang Wang ◽  
Zhiming Liu ◽  
Zhe Yuan ◽  
Jijun Xu ◽  
Jin Chen

Taking the source region of the Yellow River as an example, this paper first introduces the theory of energy value and its basic steps. Then combined with the Yellow River source area, the variation characteristics of precipitation and surface water resources from 1961 to 2011 in the Yellow River source area were analyzed, and both of them showed a trend of decreasing year by year. On this basis, using the theory of energy value, combined with relevant parameters, taking 2011 year as an example, further analyses the chemical energy and solar energy of water resources in the Yellow River source area, and gives the value of surface water resources. The value of water resources per unit is 1.59 yuan/m3. For the Yellow River source area, the overall value of water resources for the whole basin in 2011 is 33.55 billion yuan. It can provide a reference for the analysis of the value of surface water resources in the Yellow River Basin.


2015 ◽  
Vol 11 (2) ◽  
pp. 249-260 ◽  
Author(s):  
Yi-ping Fang ◽  
Chen Zhao ◽  
Yong-jian Ding ◽  
Da-he Qin ◽  
Jia-li Huang

Sign in / Sign up

Export Citation Format

Share Document