Assessing soil erosion and control factors by radiometric technique in the source region of the Yellow River, Tibetan Plateau

2014 ◽  
Vol 81 (3) ◽  
pp. 538-544 ◽  
Author(s):  
Yibo Wang ◽  
Fujun Niu ◽  
Qingbai Wu ◽  
Zeyong Gao

AbstractMeasurements of 137Cs concentration in soils were made in a representative catchment to quantify erosion rates and identify the main factors involved in the erosion in the source region of the Yellow River in the Tibetan Plateau. In order to estimate erosion rates in terms of the main factors affecting soil loss, samples were collected taking into account the slope and vegetation cover along six selected transects within the Dari County catchment. The reference inventory for the area was established at a stable, well-preserved, site of small thickness (value of 2324 Bq·m− 2). All the sampling sites had been eroded and 137Cs inventories varied widely in the topsoil (14.87–25.56 Bq·kg− 1). The effective soil loss values were also highly variable (11.03–28.35 t·km− 1·yr− 1) in line with the vegetation cover change. The radiometric approach was useful in quantifying soil erosion rates and examining patterns of soil movement.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lijuan Wen ◽  
Shihua Lv ◽  
Zhaoguo Li ◽  
Lin Zhao ◽  
Nidhi Nagabhatla

The Tibetan Plateau harbors thousands of lakes; however few studies focus on impacts of lakes on local climate in the region. To investigate and quantify impacts of the two biggest lakes (Ngoring Lake and Gyaring Lake) of the Yellow River source region in the Tibetan Plateau on local climate, two simulations (with and without the two large lakes) from May 2010 to July 2011 are performed and analyzed using the WRF-CLM model (the weather research and forecasting model coupled with the community land model). Differences between simulated results show that the WRF-CLM model could provide realistic reproduction of surface observations and has better simulation after considering lakes. Lakes mostly reduce the maximum temperature all year round and increase the minimum temperature except in March due to the large heat capacity that makes lakes absorb (release) more energy for the same temperature change compared to land. Lakes increase precipitation over the lake area and in the nearby region, mostly during 02–14 BT (Beijing Time) of July to October when the warm lake surface induces the low level horizontal convergence and updraft over lake and provides energy and vapor to benefit the development of the convection for precipitation.


2021 ◽  
Vol 13 (10) ◽  
pp. 4727-4757
Author(s):  
Mengna Li ◽  
Yijian Zeng ◽  
Maciek W. Lubczynski ◽  
Jean Roy ◽  
Lianyu Yu ◽  
...  

Abstract. The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Detailed knowledge of its hydrogeology is paramount to enable the understanding of groundwater dynamics, which plays a vital role in headwater areas like the Tibetan Plateau. Nevertheless, due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. In this study, borehole core lithology analysis, soil thickness measurement, an altitude survey, hydrogeological surveys, and hydrogeophysical surveys (e.g. magnetic resonance sounding – MRS, electrical resistivity tomography – ERT, and transient electromagnetic – TEM) were conducted in the Maqu catchment within the Yellow River source region (YRSR). The hydrogeological surveys reveal that groundwater flows from the west to the east, recharging the Yellow River. The hydraulic conductivity ranges from 0.2 to 12.4 m d−1. The MRS sounding results, i.e. water content and hydraulic conductivity, confirmed the presence of an unconfined aquifer in the flat eastern area. Based on TEM results, the depth of the Yellow River deposits was derived at several places in the flat eastern area, ranging from 50 to 208 m. The soil thickness measurements were done in the western mountainous area of the catchment, where hydrogeophysical and hydrogeological surveys were difficult to be carried out. The results indicate that most soil thicknesses, except on the valley floor, are within 1.2 m in the western mountainous area of the catchment, and the soil thickness decreases as the slope increases. These survey data and results can contribute to integrated hydrological modelling and water cycle analysis to improve a full-picture understanding of the water cycle at the Maqu catchment in the YRSR. The raw dataset is freely available at https://doi.org/10.17026/dans-z6t-zpn7 (Li et al., 2020a), and the dataset containing the processed ERT, MRS, and TEM data is also available at the National Tibetan Plateau Data Center with the link https://doi.org/10.11888/Hydro.tpdc.271221 (Li et al., 2020b).


2020 ◽  
Author(s):  
Mengna Li ◽  
Yijian Zeng ◽  
Maciek W. Lubczynski ◽  
Jean Roy ◽  
Lianyu Yu ◽  
...  

Abstract. The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Detailed knowledge of its hydrogeology is paramount to enable the understanding of groundwater dynamics, which plays a vital role in headwater areas like the Tibetan Plateau. Nevertheless, due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. In this study, borehole core lithology analysis, altitude survey, soil thickness measurement, hydrogeological survey, and hydrogeophysical surveys (e.g., Magnetic Resonance Sounding – MRS, Electrical Resistivity Tomography – ERT, and Transient Electromagnetic – TEM) were conducted in the Maqu catchment within the Yellow River Source Region (YRSR). The soil thickness measurements were done in the western mountainous area of the catchment, where hydrogeophysical surveys were difficult to be carried out. The results indicate soil thicknesses are within 1.2 m in most cases, and the soil thickness decreases as the slope increases. The hydrogeological survey reveals that groundwater flows from the west to the east, recharging the Yellow River. The hydraulic conductivity ranges from 0.2 m/d to 12.4 m/d. The MRS soundings results, i.e., water content and hydraulic conductivity, confirmed the presence of unconfined aquifer in the flat eastern area. The depth of the Yellow River deposits was derived at several places in the flat eastern area based on TEM results. These survey data and results can be used to develop integrated hydrological modeling and water cycle analysis to improve a full–picture understanding of the water cycle at the Maqu catchment in the YRSR. The raw data set is freely available at https://doi.org/10.17026/dans-z6t-zpn7 (Li et al., 2020).


Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2901
Author(s):  
Xiaoni You ◽  
Xiangying Li

Rivers as the link between terrestrial ecosystems and oceans have been demonstrated to transport a large amount of dissolved organic carbon (DOC) to downstream ecosystems. In the source region of the Yellow River (SRYR), climate warming has resulted in the rapid retreat of glaciers and permafrost, which has raised discussion on whether DOC production will increase significantly. Here, we present three-year data of DOC concentrations in river water and precipitation, explore the deposition and transport processes of DOC from SRYR. Results show that annual mean concentrations of riverine DOC ranged from 2.03 to 2.34 mg/L, with an average of 2.21 mg/L. Its seasonal variation is characterized by the highest concentration in spring and summer (2.65 mg/L and 2.62 mg/L, respectively), followed by autumn (1.95 mg/L), and the lowest in winter (1.44 mg/L), which is closely related to changes in river runoff under the influence of precipitation and temperature. The average concentration of DOC in precipitation (2.18 mg/L) is comparable with riverine DOC, while the value is inversely related to precipitation amount and is considered to be the result of precipitation dilution. DOC deposition flux in precipitation that is affected by both precipitation amount and DOC concentration roughly was 86,080, 105,804, and 73,072 tons/yr from 2013 to 2015, respectively. DOC flux delivered by the river ranged from 24,629 to 37,539 tons/yr and was dominated by river discharge. Although permafrost degradation in SRYR is increasing, DOC yield is not as significant as previously assumed and is much less than other large rivers in the world.


Author(s):  
N'diaye Edwige Hermann Meledje ◽  
Kouakou Lazare Kouassi ◽  
Yao Alexis N'Go

Abstract. In view of the complexity of the phenomenon of water related soil erosion in the Bia catchment area, linked to a large heterogeneity of soils, to a very scattered and in some places non-existent vegetation cover, and to a poorly distributed precipitation in both space and time, a mapping test of the “specific erosion” random variable is undertaken. The mapping of the intensity of the erosion hazard was carried out using the Universal Soil Loss Model (USLE). The map shows that the basin is generally characterized by relatively moderate erosion rates with an average erosion rate of 16 t/ha/year.


2022 ◽  
Vol 9 ◽  
Author(s):  
Huilong Lin ◽  
Yuting Zhao

The source park of the Yellow River (SPYR), as a vital ecological shelter on the Qinghai-Tibetan Plateau, is suffering different degrees of degradation and desertification, resulting in soil erosion in recent decades. Therefore, studying the mechanism, influencing factors and current situation of soil erosion in the alpine grassland ecosystems of the SPYR are significant for protecting the ecological and productive functions. Based on the 137Cs element tracing technique and machine learning algorithms, five strategic variable selection algorithms based on machine learning algorithms are used to identify the minimal optimal set and analyze the main factors that influence soil erosion in the SPYR. The optimal model for estimating soil erosion in the SPYR is obtained by comparisons model outputs between the RUSLE and machine learning algorithms combined with variable selection models. We identify the spatial distribution pattern of soil erosion in the study area by the optimal model. The results indicated that: (1) A comprehensive set of variables is more objective than the RUSLE model. In terms of verification accuracy, the simulated annealing -Cubist model (R = 0.67, RMSD = 1,368 t km–2⋅a–1) simulation results represents the best while the RUSLE model (R = 0.49, RMSD = 1,769 t⋅km–2⋅a–1) goes on the worst. (2) The soil erosion is more severe in the north than the southeast of the SPYR. The average erosion modulus is 6,460.95 t⋅km–2⋅a–1 and roughly 99% of the survey region has an intensive erosion modulus (5,000–8,000 t⋅km–2⋅a–1). (3) Total erosion loss is relatively 8.45⋅108 t⋅a–1 in the SPYR, which is commonly 12.64 times greater than the allowable soil erosion loss. The economic monetization of SOC loss caused by soil erosion in the entire research area was almost $47.90 billion in 2014. These results will help provide scientific evidences not only for farmers and herdsmen but also for environmental science managers and administrators. In addition, a new ecological policy recommendation was proposed to balance grassland protection and animal husbandry economic production based on the value of soil erosion reclassification.


2004 ◽  
Vol 62 (3) ◽  
pp. 310-315 ◽  
Author(s):  
Ke Zhang ◽  
Kaiyu Liu ◽  
Jinchun Yang

Offset fluvial valleys, including rivers beheaded and deflected by strike-slip faults, have long been used to estimate horizontal displacements on the faults. Larger rivers crossing such faults, however, sometimes show either no offset or only a small amount of offset compared to smaller rivers crossing the same faults. The larger rivers with higher erosional rates may widen their valleys asymmetrically downstream of strike-slip faults, rather than being beheaded or deflected. Examples are described from the Yellow River near the NE margin of the Tibetan Plateau. River beheading and asymmetrical widening are two end-members of a fluvial valley's response to strike-slip faulting, whereas deflection is a combination of both. Recognition of the formation of such asymmetrical valleys related to strike-slip faulting will help to understand fault activity better over longer time spans and enable a re-evaluation of many fault histories worldwide.


Sign in / Sign up

Export Citation Format

Share Document