scholarly journals Supplementary material to "River network and hydro-geomorphology parametrization for global river routing modelling at 1/12° resolution"

Author(s):  
Simon Munier ◽  
Bertrand Decharme
2021 ◽  
Author(s):  
Simon Munier ◽  
Bertrand Decharme

Abstract. Global scale river routing models (RRMs) are commonly used in a variety of studies, including studies on the impact of climate change on extreme flows (floods and droughts), water resources monitoring or large scale flood forecasting. Over the last two decades, the increasing number of observational datasets, mainly from satellite missions, and the increasing computing capacities, have allowed better performances of RRMs, namely by increasing their spatial resolution. The spatial resolution of a RRM corresponds to the spatial resolution of its river network, which provides flow direction of all grid cells. River networks may be derived at various spatial resolution by upscaling high resolution hydrography data. This paper presents a new global scale river network at 1/12° derived from the MERIT-Hydro dataset. The river network is generated automatically using an adaptation of the Hierarchical Dominant River Tracing (DRT) algorithm, and its quality is assessed over the 70 largest basins of the world. Although this new river network may be used for a variety of hydrology-related studies, it is here provided with a set of hydro-geomorphological parameters at the same spatial resolution. These parameters are derived during the generation of the river network and are based on the same high resolution dataset, so that the consistency between the river network and the parameters is ensured. The set of parameters includes a description of river stretches (length, slope, width, roughness, bankfull depth), floodplains (roughness, sub-grid topography) and aquifers (transmissivity, porosity, sub-grid topography). The new river network and parameters are assessed by comparing the performances of two global scale simulations with the CTRIP model, one with the current spatial resolution (1/2°) and the other with the new spatial resolution (1/12°). It is shown that CTRIP at 1/12° overall outperforms CTRIP at 1/2°, demonstrating the added value of the spatial resolution increase. The new river network and the consistent hydro-geomorphology parameters may be useful for the scientific community, especially for hydrology and hydro-geology modelling, water resources monitoring or climate studies.


2016 ◽  
Author(s):  
Thibault Lambert ◽  
Steven Bouillon ◽  
François Darchambeau ◽  
Philippe Massicotte ◽  
Alberto V. Borges

2019 ◽  
Vol 12 (6) ◽  
pp. 2501-2521 ◽  
Author(s):  
Stephan Thober ◽  
Matthias Cuntz ◽  
Matthias Kelbling ◽  
Rohini Kumar ◽  
Juliane Mai ◽  
...  

Abstract. Routing streamflow through a river network is a fundamental requirement to verify lateral water fluxes simulated by hydrologic and land surface models. River routing is performed at diverse resolutions ranging from few kilometres to 1∘. The presented multiscale routing model mRM calculates streamflow at diverse spatial and temporal resolutions. mRM solves the kinematic wave equation using a finite difference scheme. An adaptive time stepping scheme fulfilling a numerical stability criterion is introduced in this study and compared against the original parameterisation of mRM that has been developed within the mesoscale hydrologic model (mHM). mRM requires a high-resolution river network, which is upscaled internally to the desired spatial resolution. The user can change the spatial resolution by simply changing a single number in the configuration file without any further adjustments of the input data. The performance of mRM is investigated on two datasets: a high-resolution German dataset and a slightly lower resolved European dataset. The adaptive time stepping scheme within mRM shows a remarkable scalability compared to its predecessor. Median Kling–Gupta efficiencies change less than 3 % when the model parameterisation is transferred from 3 to 48 km resolution. mRM also exhibits seamless scalability in time, providing similar results when forced with hourly and daily runoff. The streamflow calculated over the Danube catchment by the regional climate model REMO coupled to mRM reveals that the 50 km simulation shows a smaller bias with respect to observations than the simulation at 12 km resolution. The mRM source code is freely available and highly modular, facilitating easy internal coupling in existing Earth system models.


2009 ◽  
Vol 6 (4) ◽  
pp. 5019-5046
Author(s):  
D. Yamazaki ◽  
T. Oki ◽  
S. Kanae

Abstract. This paper proposes an improved method to convert a fine-resolution flow direction map into a coarse-resolution river network map for the use in global river routing models. The proposed method attempts to preserve the river network structure of an original fine-resolution map in upscaling procedures, which has not been achieved by previous methods. It is found that the problem in previous methods is mainly due to the traditional way of describing downstream cells of a river network map with a direction toward one of the eight neighboring cells. Instead in the improved method, the downstream cell can be flexibly located onto any cells in the river network map. The improved method is applied to derive global river network maps at various resolutions. It succeeded to preserve the river network structure of the original flow direction map, and consequently realizes automatic construction of river network maps at any resolutions. This enables both higher-resolution approach in global river routing models and inclusion of sub-grid scale topographic features, such as realistic river meanderings and catchment boundaries. Those advantages of the proposed method are expected to enhance ability of global river routing models, providing ways to represent surface water storage and movement such as river discharge and inundated area extent in much finer-scale than ever modeled.


2021 ◽  
Vol 14 (11) ◽  
pp. 6813-6832
Author(s):  
Nathaniel W. Chaney ◽  
Laura Torres-Rojas ◽  
Noemi Vergopolan ◽  
Colby K. Fisher

Abstract. Over the past decade, there has been appreciable progress towards modeling the water, energy, and carbon cycles at field scales (10–100 m) over continental to global extents in Earth system models (ESMs). One such approach, named HydroBlocks, accomplishes this task while maintaining computational efficiency via Hydrologic Response Units (HRUs), more commonly known as “tiles” in ESMs. In HydroBlocks, these HRUs are learned via a hierarchical clustering approach from available global high-resolution environmental data. However, until now there has yet to be a river routing approach that is able to leverage HydroBlocks' approach to modeling field-scale heterogeneity; bridging this gap will make it possible to more formally include riparian zone dynamics, irrigation from surface water, and interactive floodplains in the model. This paper introduces a novel dynamic river routing scheme in HydroBlocks that is intertwined with the modeled field-scale land surface heterogeneity. Each macroscale polygon (a generalization of the concept of macroscale grid cell) is assigned its own fine-scale river network that is derived from very high resolution (∼ 30 m) digital elevation models (DEMs); the inlet–outlet reaches of a domain's macroscale polygons are then linked to assemble a full domain's river network. The river dynamics are solved at the reach-level via the kinematic wave assumption of the Saint-Venant equations. Finally, a two-way coupling between each HRU and its corresponding fine-scale river reaches is established. To implement and test the novel approach, a 1.0∘ bounding box surrounding the Atmospheric Radiation and Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (United States) is used. The results show (1) the implementation of the two-way coupling between the land surface and the river network leads to appreciable differences in the simulated spatial heterogeneity of the surface energy balance, (2) a limited number of HRUs (∼ 300 per 0.25∘ cell) are required to approximate the fully distributed simulation adequately, and (3) the surface energy balance partitioning is sensitive to the river routing model parameters. The resulting routing scheme provides an effective and efficient path forward to enable a two-way coupling between the high-resolution river networks and state-of-the-art tiling schemes in ESMs.


2019 ◽  
Author(s):  
Stephan Thober ◽  
Matthias Cuntz ◽  
Matthias Kelbling ◽  
Rohini Kumar ◽  
Juliane Mai ◽  
...  

Abstract. Routing streamflow through a river network is a fundamental requirement to verify lateral water fluxes simulated by hydrologic and land surface models. River routing is performed at diverse resolutions ranging from few kilometers to around 1°. The presented multiscale Routing Model mRM calculates streamflow at diverse spatial and temporal resolutions. mRM solves the kinematic wave equation using a finite difference scheme. An adaptive time stepping scheme fulfilling a numerical stability criteria is introduced in this study and compared against the original parametrization of mRM that has been developed within the mesoscale Hydrologic Model (mHM). mRM requires a high-resolution river network, which is upscaled internally to the desired spatial resolution. The user can change the spatial resolution by simply changing one number in the configuration file without any further adjustments of the input data. The performance of mRM is investigated on two datasets: a high-resolution German dataset and a slightly lower resolution European dataset. The adaptive time step scheme within mRM shows a remarkable scalability compared to its predecessor. Median Kling-Gupta efficiencies change less than 3 percent when the model parametrization is transferred from 3 to 48 km resolution. mRM also exhibits seamless scalability in time, providing identical results when forced with hourly and daily runoff. The streamflow calculated over the Danube catchment by the Regional Climate Model REMO coupled to mRM is comparable at 25 and 50 km resolution. The mRM source code is freely available and highly modular facilitating an easy internal coupling in existing Earth System Models.


2009 ◽  
Vol 13 (11) ◽  
pp. 2241-2251 ◽  
Author(s):  
D. Yamazaki ◽  
T. Oki ◽  
S. Kanae

Abstract. This paper proposes an improved method for converting a fine-resolution flow direction map into a coarse-resolution river network map for use in global river routing models. The proposed method attempts to preserve the river network structure of an original fine-resolution map in the upscaling procedure, as this has not been achieved with previous upscaling methods. We describe an improved method in which a downstream cell can be flexibly located on any cell in the river network map. The improved method preserves the river network structure of the original flow direction map and allows automated construction of river network maps at any resolution. Automated construction of a river network map is helpful for attaching sub-grid topographic information, such as realistic river meanderings and drainage boundaries, onto the upscaled river network map. The advantages of the proposed method are expected to enhance the ability of global river routing models by providing ways to more precisely represent surface water storage and movement.


Sign in / Sign up

Export Citation Format

Share Document