scholarly journals The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

2017 ◽  
Vol 9 (2) ◽  
pp. 601-613 ◽  
Author(s):  
Martin Wild ◽  
Atsumu Ohmura ◽  
Christoph Schär ◽  
Guido Müller ◽  
Doris Folini ◽  
...  

Abstract. The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

2017 ◽  
Author(s):  
Martin Wild ◽  
Atsumu Ohmura ◽  
Christoph Schär ◽  
Guido Müller ◽  
Doris Folini ◽  
...  

Abstract. The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web-interface and user access and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 2500 stations with 500'000 monthly mean entries of various surface energy balance components. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from National Weather Services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, as well as from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric absorption or in the detection of multi-decadal variations in surface solar radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via www.geba.ethz.ch. Supplementary data are available at doi:10.1594/PANGAEA.873078.


2017 ◽  
Author(s):  
Martin Wild ◽  
Atsumu Ohmura ◽  
Christoph Schär ◽  
Guido Müller ◽  
Maria Z. Hakuba ◽  
...  

2018 ◽  
Vol 52 (7-8) ◽  
pp. 4787-4812 ◽  
Author(s):  
Martin Wild ◽  
Maria Z. Hakuba ◽  
Doris Folini ◽  
Patricia Dörig-Ott ◽  
Christoph Schär ◽  
...  

2021 ◽  
Author(s):  
Almudena García-García ◽  
Francisco José Cuesta-Valero ◽  
Hugo Beltrami ◽  
Fidel González-Rouco ◽  
Elena García-Bustamante

<p>Interactions between the lower atmosphere and the shallow continental subsurface govern several surface processes important for ecosystems and society, such as extreme temperature and precipitation events. Transient climate simulations performed with climate models have been employed to study the water, mass and energy exchanges between the atmosphere and the shallow subsurface, obtaining large inter-model differences. Understanding the origin of differences between climate models in the simulation of near-surface conditions is crucial for restricting the inter-model variability of future climate projections. Here, we explore the effect of changes in horizontal resolution on the simulation of the surface energy balance and the climatology of near-surface conditions over North America (NA) using the Weather Research and Forecasting (WRF) model. <br>We analyzed an ensemble of twelve simulations using three different horizontal resolutions (25 km, 50 km and 100 km) and four different Land Surface Model (LSM) configurations over North America from 1980 to 2013. Our results show that increasing horizontal resolution alters the representation of shortwave radiation, affecting near-surface temperatures and consequently the partition of energy into sensible and latent heat fluxes. Thus, finer resolutions lead to higher net shortwave radiation and temperature at high NA latitudes and to lower net shortwave radiation and temperature at low NA latitudes. The use of finer resolutions also leads to an intensification of the terms associated with the surface water balance over coastal areas at low latitudes, generating higher latent heat flux, accumulated precipitation and soil moisture. The effect of the LSM choice is larger than the effect of horizontal resolution on the representation of the surface energy balance, and consequently on near-surface temperature. By contrast, the effect of the LSM configuration on the simulation of precipitation is weaker than the effect of horizontal resolution, showing larger differences among LSM simulations in summer and over regions with high latent heat flux. This ensemble of simulations is then compared against CRU data. Comparison between the CRU data and the simulated climatology of daily maximum and minimum temperatures and accumulated precipitation indicates that enhancing horizontal resolution marginally improves the simulated climatology of minimum and maximum temperatures in summer, while it leads to larger biases in accumulated precipitation. The larger biases in precipitation with the use of finer horizontal resolutions are likely related to the effect of increasing resolution on the atmospheric model component, since precipitation biases are similar using different LSM configurations.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Wang ◽  
T. C. Chakraborty ◽  
Wei Xiao ◽  
Xuhui Lee

AbstractClimate models generally predict higher precipitation in a future warmer climate. Whether the precipitation intensification occurred in response to historical warming continues to be a subject of debate. Here, using observations of the ocean surface energy balance as a hydrological constraint, we find that historical warming intensified precipitation at a rate of 0.68 ± 0.51% K−1, which is slightly higher than the multi-model mean calculation for the historical climate (0.38 ± 1.18% K−1). The reduction in ocean surface albedo associated with melting of sea ice is a positive contributor to the precipitation temperature sensitivity. On the other hand, the observed increase in ocean heat storage weakens the historical precipitation. In this surface energy balance framework, the incident shortwave radiation at the ocean surface and the ocean heat storage exert a dominant control on the precipitation temperature sensitivity, explaining 91% of the inter-model spread and the spread across climate scenarios in the Intergovernmental Panel on Climate Change Fifth Assessment Report.


2021 ◽  
Author(s):  
Martin Wild

<p>A plausible simulation of the global energy balance is a first-order requirement for a credible climate model. In the present study I investigate the representation of the global energy balance in 40 state-of-the-art global climate models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6). In the CMIP6 multi-model mean, the magnitudes of the energy balance components are often in better agreement with recent reference estimates compared to earlier model generations  such as CMIP5 on a global mean basis. However, the inter-model spread in the representation of many of the components remains substantial, often on the order of 10-20 Wm<sup>-2</sup> globally,  except for aspects of the shortwave clear-sky budgets, which are now more consistently simulated by the CMIP6 models. The substantial inter-model spread in the simulated global mean latent heat fluxes in the CMIP6 models, exceeding 20% (18 Wm<sup>-2</sup>),  further implies also large discrepancies in their representation of the global water balance. From a historic perspective of model development over the past decades, the largest adjustments in the magnitudes of the simulated present-day global mean energy balance components occurred in the shortwave atmospheric clear-sky absorption and the surface downward longwave radiation. Both components were gradually adjusted upwards over several model generations, on the order of 10 Wm<sup>-2</sup>, to reach 73 and 344 Wm<sup>-2</sup>, respectively in the CMIP6 multi-model means. Thereby, CMIP6 has become the first model generation that largely remediates long-standing model deficiencies related to an overestimation in surface downward shortwave and compensational underestimation in downward longwave radiation in its multi-model mean (Wild 2020).</p><p>Published in: Wild, M., 2020: The global energy balance as represented in CMIP6 climate models. Clim Dyn <strong>55, </strong>553–577. https://doi.org/10.1007/s00382-020-05282-7</p><p> </p>


2021 ◽  
pp. 146808742110342
Author(s):  
Francisco Payri ◽  
Jaime Martín ◽  
Francisco José Arnau ◽  
Sushma Artham

In this work, the Global Energy Balance (GEB) of a 1.6 L compression ignition engine is analyzed during WLTC using a combination of experimental measurements and simulations, by means of a Virtual Engine. The energy split considers all the relevant energy terms at two starting temperatures (20°C and 7°C) and two altitudes (0 and 1000 m). It is shown that reducing ambient temperature from 20°C to −7°C decreases brake efficiency by 1% and increases fuel consumption by 4%, mainly because of the higher friction due to the higher oil viscosity, while the effect of increasing altitude 1000 m decreases brake efficiency by 0.8% and increases fuel consumption by 2.5% in the WLTC mainly due to the change in pumping. In addition, GEB shows that ambient temperature is affecting exhaust enthalpy by 4.5%, heat rejection to coolant by 2%, and heat accumulated in the block by 2.5%, while altitude does not show any remarkable variations other than pumping and break power.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


Sign in / Sign up

Export Citation Format

Share Document