scholarly journals Ocean surface energy balance allows a constraint on the sensitivity of precipitation to global warming

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Wang ◽  
T. C. Chakraborty ◽  
Wei Xiao ◽  
Xuhui Lee

AbstractClimate models generally predict higher precipitation in a future warmer climate. Whether the precipitation intensification occurred in response to historical warming continues to be a subject of debate. Here, using observations of the ocean surface energy balance as a hydrological constraint, we find that historical warming intensified precipitation at a rate of 0.68 ± 0.51% K−1, which is slightly higher than the multi-model mean calculation for the historical climate (0.38 ± 1.18% K−1). The reduction in ocean surface albedo associated with melting of sea ice is a positive contributor to the precipitation temperature sensitivity. On the other hand, the observed increase in ocean heat storage weakens the historical precipitation. In this surface energy balance framework, the incident shortwave radiation at the ocean surface and the ocean heat storage exert a dominant control on the precipitation temperature sensitivity, explaining 91% of the inter-model spread and the spread across climate scenarios in the Intergovernmental Panel on Climate Change Fifth Assessment Report.

2021 ◽  
Author(s):  
Almudena García-García ◽  
Francisco José Cuesta-Valero ◽  
Hugo Beltrami ◽  
Fidel González-Rouco ◽  
Elena García-Bustamante

<p>Interactions between the lower atmosphere and the shallow continental subsurface govern several surface processes important for ecosystems and society, such as extreme temperature and precipitation events. Transient climate simulations performed with climate models have been employed to study the water, mass and energy exchanges between the atmosphere and the shallow subsurface, obtaining large inter-model differences. Understanding the origin of differences between climate models in the simulation of near-surface conditions is crucial for restricting the inter-model variability of future climate projections. Here, we explore the effect of changes in horizontal resolution on the simulation of the surface energy balance and the climatology of near-surface conditions over North America (NA) using the Weather Research and Forecasting (WRF) model. <br>We analyzed an ensemble of twelve simulations using three different horizontal resolutions (25 km, 50 km and 100 km) and four different Land Surface Model (LSM) configurations over North America from 1980 to 2013. Our results show that increasing horizontal resolution alters the representation of shortwave radiation, affecting near-surface temperatures and consequently the partition of energy into sensible and latent heat fluxes. Thus, finer resolutions lead to higher net shortwave radiation and temperature at high NA latitudes and to lower net shortwave radiation and temperature at low NA latitudes. The use of finer resolutions also leads to an intensification of the terms associated with the surface water balance over coastal areas at low latitudes, generating higher latent heat flux, accumulated precipitation and soil moisture. The effect of the LSM choice is larger than the effect of horizontal resolution on the representation of the surface energy balance, and consequently on near-surface temperature. By contrast, the effect of the LSM configuration on the simulation of precipitation is weaker than the effect of horizontal resolution, showing larger differences among LSM simulations in summer and over regions with high latent heat flux. This ensemble of simulations is then compared against CRU data. Comparison between the CRU data and the simulated climatology of daily maximum and minimum temperatures and accumulated precipitation indicates that enhancing horizontal resolution marginally improves the simulated climatology of minimum and maximum temperatures in summer, while it leads to larger biases in accumulated precipitation. The larger biases in precipitation with the use of finer horizontal resolutions are likely related to the effect of increasing resolution on the atmospheric model component, since precipitation biases are similar using different LSM configurations.</p>


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


2013 ◽  
Vol 10 (12) ◽  
pp. 15263-15294 ◽  
Author(s):  
M. L. Roderick ◽  
F. Sun ◽  
W. H. Lim ◽  
G. D. Farquhar

Abstract. Climate models project increases in globally averaged atmospheric specific humidity at the Clausius–Clapeyron (CC) value of around 7% K−1 whilst projections for precipitation (P) and evaporation (E) are somewhat muted at around 2% K−1. Such global projections are useful summaries but do not provide guidance at local (grid box) scales where impacts occur. To bridge that gap in spatial scale, previous research has shown that the following relation, Δ(P − E) ∝ P − E, holds for zonal averages in climate model projections. In this paper we first test whether that relation holds at grid box scales over ocean and over land. We find that the zonally averaged relation does not hold at grid box scales. We further find that the zonally averaged relation does not hold over land – it is specific to zonal averages over the ocean. As an alternative we tested whether the long-standing Budyko framework of catchment hydrology could be used to synthesise climate model projections over land. We find that climate model projections of Δ(P − E) out to the year 2100 conform closely to the Budyko framework. The analysis also revealed that climate models project little change in the net irradiance at the surface. To understand that result we examined projections of the key surface energy balance terms. In terms of global averages, we find the climate model projections are dominated by changes in only three terms of the surface energy balance; an increase in the incoming longwave irradiance while the responses are (mostly) restricted to the outgoing longwave irradiance with a small change in the evaporative flux. Because the change in outgoing longwave irradiance is a function of the change in surface temperature, we show that the precipitation sensitivity (i.e. 2% K−1) is an accurate summary of the partitioning of the greenhouse-induced surface forcing. With that we demonstrate that the precipitation sensitivity (2% K−1) is less than the CC value (7% K−1) because most of the greenhouse-induced surface forcing is partitioned into outgoing longwave irradiance (instead of evaporation). In essence, the models respond to elevated [CO2] by an increase in atmospheric water vapour content that increases the incoming long-wave irradiance at the surface. The surface response is dominated by a near equal increase in outgoing long-wave irradiance with only minor changes in other terms of the surface energy balance.


2021 ◽  
Author(s):  
Kine Onsum Moseid

<p>The Earth’s surface energy balance is heavily affected by incoming solar radiation and how it propagates through our atmosphere. How the sunlight propagates towards the surface depends on the atmospheric presence of aerosols, gases, and clouds. </p><p>Surface temperature evolution according to earth system models (ESMs) in the historical experiment from the coupled model intercomparison project phase 6 (CMIP6) suggests that models may be overly sensitive to aerosol forcing. Other studies have found that ESMs do not recreate observed decadal patterns in surface shortwave radiation - suggesting the models inaccurately underestimate the shortwave impact of atmospheric aerosols. These contradictory results act as a basis for our study.<br>Our study decomposes what determines both all sky and clear sky downwelling shortwave radiation at the surface in ESMs, using different experiments of CMIP6. We try to determine the respective role of aerosols, clouds and gases in the shortwave energy balance at the surface, and assess the effect of seasonality and regional differences.</p>


2007 ◽  
Vol 46 (4) ◽  
pp. 477-493 ◽  
Author(s):  
Andrew M. Coutts ◽  
Jason Beringer ◽  
Nigel J. Tapper

Abstract Variations in urban surface characteristics are known to alter the local climate through modification of land surface processes that influence the surface energy balance and boundary layer and lead to distinct urban climates. In Melbourne, Australia, urban densities are planned to increase under a new strategic urban plan. Using the eddy covariance technique, this study aimed to determine the impact of increasing housing density on the surface energy balance and to investigate the relationship to Melbourne’s local climate. Across four sites of increasing housing density and varying land surface characteristics (three urban and one rural), it was found that the partitioning of available energy was similar at all three urban sites. Bowen ratios were consistently greater than 1 throughout the year at the urban sites (often as high as 5) and were higher than the rural site (less than 1) because of reduced evapotranspiration. The greatest difference among sites was seen in urban heat storage, which was influenced by urban canopy complexity, albedo, and thermal admittance. Resulting daily surface temperatures were therefore different among the urban sites, yet differences in above-canopy daytime air temperatures were small because of similar energy partitioning and efficient mixing. However, greater nocturnal temperatures were observed with increasing density as a result of variations in heat storage release that are in part due to urban canyon morphology. Knowledge of the surface energy balance is imperative for urban planning schemes because there is a possibility for manipulation of land surface characteristics for improved urban climates.


2016 ◽  
Author(s):  
S. Ebrahimi ◽  
S. J. Marshall

Abstract. Energy exchanges between the atmosphere and the glacier surface control the net energy available for snow and ice melt. Meteorological and glaciological observations are not always available to measure glacier energy and mass balance directly, so models of energy balance processes are often necessary to understand glacier response to meteorological variability and climate change. This paper explores the theoretical and empirical response of a mid-latitude glacier in the Canadian Rocky Mountains to the daily and interannual variations in the meteorological parameters that govern the surface energy balance. The model's reference conditions are based on 11 years of in situ observations from an automatic weather station at an elevation of 2660 m, in the upper ablation area of Haig Glacier. We use an energy balance model to run sensitivity tests to perturbations in temperature, specific humidity, wind speed, incoming shortwave radiation, and glacier surface albedo. The variables were perturbed one at a time for the duration of the glacier melt season, May to September, for the years 2002–2012. The experiments indicate that summer melt has the strongest sensitivity to interannual variations in incoming shortwave radiation, albedo, and temperature, in that order. To explore more realistic scenarios where meteorological variables and internal feedbacks such as the surface albedo co-evolve, we use the same perturbation approach using meteorological forcing from the North American Regional Reanalysis (NARR) over the period 1979–2014. These experiments provide an estimate of historical variability in Haig Glacier surface energy balance an d melt for years prior to our observational study. The methods introduced in this paper provide a methodology that can be employed in distributed energy balance modelling at regional scales. They also provide the foundation for theoretical framework that can be adapted to compare the climatic sensitivity of glaciers in different climate regimes, e.g., polar, maritime, or tropical environments.


2020 ◽  
Vol 13 (1) ◽  
pp. 59
Author(s):  
Joshua Hrisko ◽  
Prathap Ramamurthy ◽  
David Melecio-Vázquez ◽  
Jorge E. Gonzalez

Heat storage, ΔQs, is quantified for 10 major U.S. cities using a method called the thermal variability scheme (TVS), which incorporates urban thermal mass parameters and the variability of land surface temperatures. The remotely sensed land surface temperature (LST) is retrieved from the GOES-16 satellite and is used in conjunction with high spatial resolution land cover and imperviousness classes. New York City is first used as a testing ground to compare the satellite-derived heat storage model to two other methods: a surface energy balance (SEB) residual derived from numerical weather model fluxes, and a residual calculated from ground-based eddy covariance flux tower measurements. The satellite determination of ΔQs was found to fall between the residual method predicted by both the numerical weather model and the surface flux stations. The GOES-16 LST was then downscaled to 1-km using the WRF surface temperature output, which resulted in a higher spatial representation of storage heat in cities. The subsequent model was used to predict the total heat stored across 10 major urban areas across the contiguous United States for August 2019. The analysis presents a positive correlation between population density and heat storage, where higher density cities such as New York and Chicago have a higher capacity to store heat when compared to lower density cities such as Houston or Dallas. Application of the TVS ultimately has the potential to improve closure of the urban surface energy balance.


Sign in / Sign up

Export Citation Format

Share Document