scholarly journals The Global Methane Budget 2000–2017

Author(s):  
Marielle Saunois ◽  
Ann R. Stavert ◽  
Ben Poulter ◽  
Philippe Bousquet ◽  
Joseph G. Canadell ◽  
...  

Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). Assessing the relative importance of CH4 in comparison to CO2 is complicated by its shorter atmospheric lifetime, stronger warming potential, and atmospheric growth rate variations over the past decade, the causes of which are still debated. Two major difficulties in reducing uncertainties arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (top-down approach) to be 572 Tg CH4 yr−1 (range 538–593, corresponding to the minimum and maximum estimates of the ensemble), of which 357 Tg CH4 yr−1 or ~ 60 % are attributed to anthropogenic sources (range 50–65 %). This total emission is 27 Tg CH4 yr−1 larger than the value estimated for the period 2000–2009 and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for the period 2003–2012 (Saunois et al. 2016). Since 2012, global CH4 emissions have been tracking the carbon intensive scenarios developed by the Intergovernmental Panel on Climate Change (Gidden et al., 2019). Bottom-up methods suggest larger global emissions (737 Tg CH4 yr−1, range 583–880) than top-down inversion methods, mostly because of larger estimated natural emissions from sources such as natural wetlands, other inland water systems, and geological sources. However the strength of the atmospheric constraints on the top-down budget, suggest that these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric-based emissions indicates a predominance of tropical emissions (~ 65 % of the global budget,

2020 ◽  
Vol 12 (3) ◽  
pp. 1561-1623 ◽  
Author(s):  
Marielle Saunois ◽  
Ann R. Stavert ◽  
Ben Poulter ◽  
Philippe Bousquet ◽  
Josep G. Canadell ◽  
...  

Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.


2016 ◽  
Vol 8 (2) ◽  
pp. 697-751 ◽  
Author(s):  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Ben Poulter ◽  
Anna Peregon ◽  
Philippe Ciais ◽  
...  

Abstract. The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.


2016 ◽  
Author(s):  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Ben Poulter ◽  
Anna Peregon ◽  
Philippe Ciais ◽  
...  

Abstract. The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (~biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (T-D, exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories, and data-driven approaches (B-U, including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by T-D inversions at 558 Tg CH4 yr−1 (range [540–568]). About 60 % of global emissions are anthropogenic (range [50–65 %]). B-U approaches suggest larger global emissions (736 Tg CH4 yr−1 [596–884]) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the T-D budget, it is likely that some of the individual emissions reported by the B-U approaches are overestimated, leading to too large global emissions. Latitudinal data from T-D emissions indicate a predominance of tropical emissions (~64 % of the global budget,


2013 ◽  
Vol 5 (2) ◽  
pp. 216-232
Author(s):  
Sibylle Kabisch ◽  
Ronjon Chakrabarti ◽  
Till Wolf ◽  
Wilhelm Kiewitt ◽  
Ty Gorman ◽  
...  

With regional variations, climate change has a significant impact on water quality deterioration and scarcity, which are serious challenges in developing countries and emerging economies. Often, effective projects to improve water management in the light of climate change are difficult to develop because of the complex interrelations between direct and indirect climate impacts and local perceptions of vulnerabilities and needs. Adaptation projects can be developed through a combination of participatory, bottom-up needs assessments and top-down analyses. Climate change impact chains can help to display the causal chain of climate signals and resulting impacts and thereby establish a system map as a basis for stakeholder discussions. This article aims to develop specific climate change impact chains for the water management sector in rural coastal India that combine bottom-up and top-down perspectives. Case studies from Tamil Nadu and Andhra Pradesh, India, provide a basis for the impact chains developed. Bottom-up data were gathered through a vulnerability and needs assessment in 18 villages complemented with top-down research data. The article is divided into four steps: (1) system of interest; (2) data on climate change signals; (3) climate change impacts based on top-down as well as bottom-up information; (4) specific impact chains complemented by initial climate change adaptation options.


2021 ◽  
Author(s):  
Emily Dowd ◽  
Christopher Wilson ◽  
Martyn Chipperfield ◽  
Manuel Gloor

&lt;p&gt;Methane (CH&lt;sub&gt;4&lt;/sub&gt;) is the second most important atmospheric greenhouse gas after carbon dioxide. Global concentrations of CH&lt;sub&gt;4&lt;/sub&gt; have been rising in the last decade and our understanding of what is driving the increase remains incomplete. Natural sources, such as wetlands, contribute to the uncertainty of the methane budget. However, anthropogenic sources, such as fossil fuels, present an opportunity to mitigate the human contribution to climate change on a relatively short timescale, since CH&lt;sub&gt;4&lt;/sub&gt; has a much shorter lifetime than carbon dioxide. Therefore, it is important to know the relative contributions of these sources in different regions.&lt;/p&gt;&lt;p&gt;We have investigated the inter-annual variation (IAV) and rising trend of CH&lt;sub&gt;4&lt;/sub&gt; concentrations using a global 3-D chemical transport model, TOMCAT. We independently tagged several regional natural and anthropogenic CH&lt;sub&gt;4&lt;/sub&gt; tracers in TOMCAT to identify their contribution to the atmospheric CH&lt;sub&gt;4&lt;/sub&gt; concentrations over the period 2009 &amp;#8211; 2018. The tagged regions were selected based on the land surface types and the predominant flux sector within each region and include subcontinental regions, such as tropical South America, boreal regions and anthropogenic regions such as Europe. We used surface CH&lt;sub&gt;4&lt;/sub&gt; fluxes derived from a previous TOMCAT-based atmospheric inversion study (Wilson et al., 2020). These atmospheric inversions were constrained by satellite and surface flask observations of CH&lt;sub&gt;4&lt;/sub&gt;, giving optimised monthly estimates for fossil fuel and non-fossil fuel emissions on a 5.6&amp;#176; horizontal grid. During the study period, the total optimised CH&lt;sub&gt;4&lt;/sub&gt; flux grew from 552 Tg/yr to 593 Tg/yr. This increase in emissions, particularly in the tropics, contributed to the increase in atmospheric CH&lt;sub&gt;4 &lt;/sub&gt;concentrations and added to the imbalance in the CH&lt;sub&gt;4&lt;/sub&gt; budget. We will use the results of the regional tagged tracers to quantify the contribution of regional methane emissions at surface observation sites, and to quantify the contributions of the natural and anthropogenic emissions from the tagged regions to the IAV and the rising methane concentrations.&lt;/p&gt;&lt;p&gt;Wilson, C., Chipperfield, M. P., Gloor, M., Parker, R. J., Boesch, H., McNorton, J., Gatti, L. V., Miller, J. B., Basso, L. S., and Monks, S. A.: Large and increasing methane emissions from Eastern Amazonia derived from satellite data, 2010&amp;#8211;2018, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1136, in review, 2020.&lt;/p&gt;


2016 ◽  
Vol 16 (2) ◽  
pp. 989-1002 ◽  
Author(s):  
P. Wang ◽  
H. Wang ◽  
Y. Q. Wang ◽  
X. Y. Zhang ◽  
S. L. Gong ◽  
...  

Abstract. Emissions inventories of black carbon (BC), which are traditionally constructed using a bottom-up approach based on activity data and emissions factors, are considered to contain a large level of uncertainty. In this paper, an ensemble optimal interpolation (EnOI) data assimilation technique is used to investigate the possibility of optimally recovering the spatially resolved emissions bias of BC. An inverse modeling system for emissions is established for an atmospheric chemistry aerosol model and two key problems related to ensemble data assimilation in the top-down emissions estimation are discussed: (1) how to obtain reasonable ensembles of prior emissions and (2) establishing a scheme to localize the background-error matrix. An experiment involving 1-year-long simulation cycle with EnOI inversion of BC emissions is performed for 2008. The bias of the BC emissions intensity in China at each grid point is corrected by this inverse system. The inverse emission over China in January is 240.1 Gg, and annual emission is about 2539.3 Gg, which is about 1.8 times of bottom-up emission inventory. The results show that, even though only monthly mean BC measurements are employed to inverse the emissions, the accuracy of the daily model simulation improves. Using top-down emissions, the average root mean square error of simulated daily BC is decreased by nearly 30 %. These results are valuable and promising for a better understanding of aerosol emissions and distributions, as well as aerosol forecasting.


2020 ◽  
Author(s):  
Alba Lorente ◽  
Tobias Borsdorff ◽  
Joost aan de Brugh ◽  
Andre Butz ◽  
Mahesh Kumar Sha ◽  
...  

&lt;p align=&quot;justify&quot;&gt;&lt;span&gt;The TROPOspheric Monitoring Instrument (TROPOMI) aboard of the Sentinel 5 Precursor (S5P) has provided methane measurements for more than two years. The high accuracy together with the exceptional spatial resolution (7 x 7 km&lt;/span&gt;&lt;sup&gt;&lt;span&gt;2&lt;/span&gt;&lt;/sup&gt;&lt;span&gt;, 7 x 5.2 km&lt;/span&gt;&lt;sup&gt;&lt;span&gt;2 &lt;/span&gt;&lt;/sup&gt;&lt;span&gt;since August 2019) and temporal coverage (daily) of TROPOMI provides a unique perspective on local to regional methane enhancements. In this contribution, we discuss observations of enhanced methane concentrations over the United States. We analyse in detail temporal and spatial variability of methane over wetlands and agricultural areas along the Mississippi river and in Florida. To understand the observed CH4 anomalies regarding both natural and anthropogenic sources and transport at regional scales, we support our analysis with simulations from the GEOS-Chem atmospheric chemistry and transport model. We also investigate the possibility to use other datasets as a proxy for CH4 emissions (e.g. NO2 for agricultural areas, land surface temperature for wetlands). These results are based on an improved TROPOMI methane product that features among others a new bias correction that is fully independent of any reference measurements. The verification of the TROPOMI XCH4 data with ground-based measurements by the TCCON network yields a station-to-station variability of the XCH&lt;/span&gt;&lt;sub&gt;&lt;span&gt;4&lt;/span&gt;&lt;/sub&gt;&lt;span&gt; error below 10 ppb, in agreement with the comparison with the proxy methane product from the Japanese GOSAT and GOSAT-2 missions. The improved TROPOMI methane product is planned as a future update of the operational TROPOMI processor.&lt;/span&gt;&lt;/p&gt;&lt;p align=&quot;justify&quot;&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2017 ◽  
Vol 86 (3) ◽  
pp. 566-576 ◽  
Author(s):  
Marianne Pasanen‐Mortensen ◽  
Bodil Elmhagen ◽  
Harto Lindén ◽  
Roger Bergström ◽  
Märtha Wallgren ◽  
...  
Keyword(s):  
Land Use ◽  
Top Down ◽  

2009 ◽  
Vol 6 (1) ◽  
pp. 1317-1343 ◽  
Author(s):  
C. Gerbig ◽  
A. J. Dolman ◽  
M. Heimann

Abstract. Estimating carbon exchange at regional scales is paramount to understanding feedbacks between climate and the carbon cycle, but also to verifying climate change mitigation such as emission reductions and strategies compensating for emissions such as carbon sequestration. This paper discusses evidence for a number of important shortcomings of current generation modelling frameworks designed to provide regional scale budgets. Current top-down and bottom-up approaches targeted at deriving consistent regional scale carbon exchange estimates for biospheric and anthropogenic sources and sinks are hampered by a number of issues: We show that top-down constraints using point measurements made from tall towers, although sensitive to larger spatial scales, are however influenced by local areas much stronger than previously thought. On the other hand, classical bottom-up approaches using process information collected at the local scale, such as from eddy covariance data, need up-scaling and validation on larger scales. We therefore argue for a combination of both approaches, implicitly providing the important local scale information for the top-down constraint, and providing the atmospheric constraint for up-scaling of flux measurements. Combining these data streams necessitates quantifying their respective representation errors, which are discussed. The impact of these findings on future network design is highlighted, and some recommendations are given.


2016 ◽  
Vol 67 (8) ◽  
pp. 1175 ◽  
Author(s):  
Susannah M. Leahy ◽  
Garry R. Russ ◽  
Rene A. Abesamis

The question of whether biological systems are maintained by top-down versus bottom-up drivers is a recurring one in ecology. It is a particularly important question to address in the management of coral reefs, which are at risk from a variety of anthropogenic stressors. Here, we explicitly test whether the abundance of different feeding guilds of coral-associated Chaetodon butterflyfishes are controlled by top-down or bottom-up drivers, and we assess the relative influence of all statistically significant drivers. We find that the abundance and species richness of Chaetodon butterflyfishes are predominately determined by bottom-up drivers. The abundance of corallivores is primarily driven by availability of branching and tabular live corals, whereas the abundance of generalists is most strongly influenced by a negative association with macroalgal cover. We also find evidence of weak top-down control on the abundance of corallivorous butterflyfish by gape-limited mesopredators, but no such effects on generalist butterflyfish. Our findings indicate that conservation of coral reefs for Chaetodon butterflyfishes must include management at a larger spatial scale in order to reduce the effect of coral reef stressors such as declining water quality and climate change, but should also include implementation of fisheries management tools in order to increase local herbivory.


Sign in / Sign up

Export Citation Format

Share Document