scholarly journals From apex to shoreline: fluvio-deltaic architecture for the Holocene Rhine-Meuse delta, The Netherlands

2021 ◽  
Author(s):  
Marc J. P. Gouw ◽  
Marc P. Hijma

Abstract. Despite extensive research on alluvial architecture, there is still a pressing need for data from modern fluvio-deltaic environments. Previous research in the fluvial-dominated proximal and central Rhine-Meuse delta (The Netherlands) has yielded clear spatial trends in alluvial architecture. In this paper, we include the backwater length to establish architectural trends from apex to shoreline. Channel-belt sand body width/thickness ratios and interconnectedness were determined and the proportions of fluvial channel-belt deposits, fluvial overbank deposits, organics and intertidal deposits were calculated for the complete fluvio-deltaic wedge, based on high-resolution geological cross-sections. It was found that the average width/thickness ratio of channel-belt sand bodies in the proximal delta is five times higher than in the distal delta. Other down-valley trends include an 80 %-decrease of the channel deposit proportion (CDP) and a near-constant proportion of overbank deposits. Additionally, interconnectedness in the proximal delta is three times higher than in the distal delta. Based on the Rhine-Meuse dataset, the authors propose a linear empirical function to model the spatial variability of CDP. It is argued that this relationship is driven by four key factors that change along stream: channel lateral-migration rate, channel-belt longevity, creation of accommodation space and inherited flood-plain width. Additionally, it is established that the sensitivity of CDP to changes in the ratio between channel-belt sand body width and flood-plain with, (normalised channel-belt sand body width) varies spatially and is greatest in the central and distal delta. Also, the proportion of fluvial channel-belt sands is generally an appropriate proxy for the total sand content of fluvio-deltaic successions, albeit that its suitability as a total-sand indicator rapidly fades in the distal delta. With this paper, unique high-resolution quantitative data and spatial trends on the alluvial architecture are available for an entire delta, hereby providing a dataset that can be used to further improve existing fluvial stratigraphy models.

2022 ◽  
Vol 10 (1) ◽  
pp. 43-64
Author(s):  
Marc J. P. Gouw ◽  
Marc P. Hijma

Abstract. Despite extensive research on alluvial architecture, there is still a pressing need for data from modern fluvio-deltaic environments. Previous research in the fluvial-dominated proximal and central Rhine–Meuse delta (the Netherlands) has yielded clear spatial trends in alluvial architecture. In this paper, we include the backwater length to establish architectural trends from apex to shoreline. Channel-belt sand body width / thickness ratios and interconnectedness were determined, and the proportions of fluvial channel-belt deposits, fluvial overbank deposits, organics and intertidal deposits were calculated for the complete fluvio-deltaic wedge based on high-resolution geological cross sections. It was found that the average width / thickness ratio of channel-belt sand bodies in the proximal delta is 5 times higher than in the distal delta. Other down-valley trends include an 80 % decrease in the channel deposit proportion (CDP) and a near-constant proportion of overbank deposits. Additionally, interconnectedness in the proximal delta is 3 times higher than in the distal delta. Based on the Rhine–Meuse dataset, we propose a linear empirical function to model the spatial variability of CDP. It is argued that this relationship is driven by four key factors: channel lateral-migration rate, channel-belt longevity, creation of accommodation space and inherited floodplain width. Additionally, it is established that the sensitivity of CDP to changes in the ratio between channel-belt sand body width and floodplain width (normalized channel-belt sand body width) varies spatially and is greatest in the central and distal delta. Furthermore, the proportion of fluvial channel-belt sands is generally an appropriate proxy for the total sand content of fluvio-deltaic successions, although its suitability as a total sand indicator rapidly fades in the distal delta. Characteristics of the backwater zone of the Rhine–Meuse delta are (1) sand body width / thickness ratios that are lower as a consequence of channel narrowing (not deepening), (2) a rapid increase and then a drop in the organic proportion, (3) an increase in the total sand proportion towards the shoreline, and (4) a drop in the connectedness ratio. For this paper, unique high-resolution quantitative data and spatial trends of the alluvial architecture are presented for an entire delta, providing data that can be used to further improve existing fluvial stratigraphy models.


2008 ◽  
Vol 87 (4) ◽  
pp. 291-307 ◽  
Author(s):  
W.J. Autin

AbstractThe Late Pleistocene Wijchen Member (WM) and its informal stratigraphic precursors have been recognized for decades in the Rhine-Meuse Valley of the Netherlands. Although the WM marks the top of the Kreftenheye Formation (KF) at the boundary between Pleistocene and Holocene lithofacies and provides a confining bed for the regional alluvial aquifer, significant issues remain regarding WM depositional environment and processes of sedimentation. Regional WM chronology suggests a time-transgressive, millennium scale response of the Rhine River to Lateglacial climate oscillations. This paper compares interpretations of sedimentation process, stratigraphic pattern, and paleoenvironmental significance to prevailing viewpoints on the WM mode of origin.A flood basin in the Over Betuwe between the channel belts of the Neder Rijn and River Waal is investigated to characterize WM stratigraphy. The KF braided stream deposits (Kb) form a regionally extensive sandy to gravelly lithofacies. As Kb aggradation ceased, fluvial channels incised into local braid plain swales. The WM was deposited during episodes of fluvial activity as a suspended load mud drape across segments of the abandoned braid plain. The WM is a gray silty lithofacies that also contains local admixtures of sand. Explanations for the origin of the sand admixed into the mud include variability in hydrodynamic load across the flood plain, eolian mixing, and/or biogenic mixing. In the study area, eolian deposition of sand onto a wet flood plain surface is the most probable cause for the admixed sand fraction. Pedogenesis of the WM in the study area is limited to gleying under reduced wetland conditions and the development of organic rich vegetation horizons that formed on top of relatively unaltered fluvial strata. Similar reduced soil properties and limited pedogenic development occur downdip to the present coast, but updip of the study area, the WM is the parent material for poorly drained to well drained and oxidized profiles that range from Entisols to weakly expressed Alfisols.The presence of pumice granules in Kb deposits of the study area indicate that channel belt deposition continued after the Laacher See volcanic eruption in Germany at ~12,900 cal yr. Deposition of the WM occurred episodically throughout the Lateglacial and terminated by the early Holocene. The time interval between the end of WM deposition and subsequent burial by flood basin peat reflects a duration of exposure of at least 3500 yrs. Since regional water table rise affected the area ~5000 cal yrs ago, the early Holocene water table must have been maintained by spring fed ground water sources from nearby ice pushed ridges.Deposition of the WM is associated with transitional braided to meandering fluvial channels during times when the Rhine-Meuse Valley experienced a sensitive response to rapid climate change. The WM is regionally time transgressive and probably formed during flood plain transitions between permafrost and base-flow driven hydrologic regimes. Regional landscape dynamics suggest that WM deposition and subsequent preservation was driven by fluctuations of the southern limit of permafrost during Northern Hemisphere deglaciation.


Author(s):  
Bernadette Wichman ◽  
Mark Klein Breteler ◽  
Arjan De Looff ◽  
Jan Hateboer

In the Netherlands, 600 km of the sea dikes are protected by an asphaltic revetment which must resist considerable wave loads with a significant wave height of up to 4.5 m. The subsoil is normally sandy, and the asphalt layer can fail as a result of fatigue due to repeated loading under storm conditions (Wichman & Davise 2016). Fifty years old asphalt has been taken from the Dutch Lauwersmeer dike and placed on a sand body in the large Deltaflume at Deltares, where it is possible to generate large waves (up to 4 meters). It is still unsure how the asphalt will fail, while interacting with the sandy subsoil, depending on the position of the phreatic line, among other factors.


Geology ◽  
2021 ◽  
Author(s):  
Alistair T. Hayden ◽  
Michael P. Lamb ◽  
Alexander J. Carney

The surface of Mars contains abundant sinuous ridges that appear similar to river channels in planform, but they stand as topographic highs. Ridges have similar curvature-to-width ratios as terrestrial meandering rivers, which has been used to support the hypothesis that ridges are inverted channels that directly reflect channel geometry. Anomalously wide ridges, in turn, have been interpreted as evidence for larger rivers on Mars compared to Earth. However, an alternate hypothesis is that ridges are exhumed channel-belt deposits—a larger zone of relatively coarse-grained deposits formed from channel lateral migration and aggradation. Here, we measured landform wavelength, radius of curvature, and width to compare terrestrial channels, terrestrial channel belts, and martian ridges. We found that all three landforms follow similar scaling relations, in which ratios of radius of curvature to width range from 1.7 to 7.3, and wavelength-to-width ratios range from 5.8 to 13. We interpret this similarity to be a geometric consequence of a sinuous curved line of finite width. Combined with observations of ridge-stacking patterns, our results suggest that wide ridges on Mars could indicate fluvial channel belts that formed over significant time rather than anomalously large rivers.


2019 ◽  
Vol 40 (2) ◽  
pp. 822-840 ◽  
Author(s):  
Iris Manola ◽  
Gert‐Jan Steeneveld ◽  
Remko Uijlenhoet ◽  
Albert A. M. Holtslag

2013 ◽  
Vol 734-737 ◽  
pp. 436-439
Author(s):  
Bai Quan Yan ◽  
Xue Jing Ma ◽  
Li Hui Yuan ◽  
Gui Pu Jing

Putaohua reservoir is the principal producing formation in Daqing oilfield Xingbei block. The spatial distribution of single sand body is particularly important for the residual oil tapping in the middle-late stage of oilfield development. The paper studied sedimentary microfacies of Putaohua reservoirs in the zone, established high-resolution sequence stratigraphic framework of the area and a typical single sand body logging phase mode on the basis of logging features, finely portrayed single sand body type and spatial distribution on this basis to lay the solid geological foundation for oilfield subsequent residual oil tapping and provide a scientific geology guide.


2002 ◽  
Vol 42 (1) ◽  
pp. 65 ◽  
Author(s):  
P.C. Strong ◽  
G.R. Wood ◽  
S.C. Lang ◽  
A. Jollands ◽  
E. Karalaus ◽  
...  

Fluvial-lacustrine reservoirs in coal-bearing strata provide a particular challenge for reservoir characterisation because of the dominance of coal on the seismic signature and the highly variable reservoir geometry, quality and stratigraphic connectivity. Geological models for the fluvial gas reservoirs in the Permian Patchawarra Formation of the Cooper Basin are critical to minimise the perceived reservoir risks of these relatively deep targets. This can be achieved by applying high-resolution sequence stratigraphic concepts and finescaled seismic mapping. The workflow begins with building a robust regional chronostratigraphic framework, focussing on widespread lacustrine flooding surfaces and unconformities, tied to seismic scale reflectors. This framework is refined by identification of local surfaces that divide the Patchawarra Formation into high-resolution genetic units. A log facies scheme is established based on wireline log character, and calibrated to cores and cuttings, supported by analogue studies, such as the modern Ob River system in Western Siberia. Stacking patterns within each genetic unit are used to determine depositional systems tracts, which can have important reservoir connectivity implications. This leads to the generation of log signature maps for each interval, from which palaeogeographic reconstructions are generated. These maps are drawn with the guiding control of syn-depositional structural features and net/ gross trends. Estimates of fluvial channel belt widths are based on modern and ancient analogues. The resultant palaeogeography maps are used with structural and production data to refine play concepts, as a predictive tool to locate exploration and development drilling opportunities, to assess volumetrics, and to improve drainage efficiency and recovery during production of hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document