scholarly journals Controls on the rates and products of particle attrition by bed-load collisions

2021 ◽  
Vol 9 (4) ◽  
pp. 755-770
Author(s):  
Kimberly Litwin Miller ◽  
Douglas Jerolmack

Abstract. River rocks round through the process of impact attrition, whereby energetic collisions during bed-load transport induce chipping of the grain surface. This process is also important for bedrock erosion. Although previous work has shown that impact energy, lithology, and shape are controlling factors for attrition rates, the functional dependence among these quantities is not settled. Here we examine these factors using a double-pendulum apparatus that generates controlled collisions between two grains under conditions relevant for bed-load transport. We also determine the grain size distributions (GSDs) of the attrition products. Two experimental results appear to support previous treatments of impact erosion as brittle fracture: (i) mass loss is proportional to kinetic energy, and this proportionality is a function of previously identified material properties; and (ii) attrition-product GSDs are well described by a Weibull distribution. Chipping results from the development of shallow and surface-parallel cracks, a process that is distinct from bulk fragmentation that occurs at higher energies. We suggest that Hertzian fracture is the dominant mechanism of impact attrition for bed-load transport. We also identify an initial phase of rapid mass loss in which attrition is independent of energy and material properties; this is a shape effect associated with removal of very sharp corners. The apparent universality of both mass loss curves and attrition-product GSDs requires further investigation. Nonetheless, these findings are useful for interpreting the contribution of in-stream attrition to downstream fining and the production of sand resulting from bed-load transport of river pebbles.

2020 ◽  
Author(s):  
Kimberly Litwin Miller ◽  
Douglas Jerolmack

Abstract. River rocks round through the process of impact attrition, where energetic collisions during bed-load transport induce chipping of the grain surface. This process is also important for bedrock erosion. Although previous work has shown that impact energy, lithology and shape are controlling factors for attrition rates, the functional dependence among these quantities is not settled. Here we examine these factors using a double-pendulum apparatus, that generates controlled collisions between two grains under conditions relevant for bed-load transport. We also determine the grain-size distributions (GSDs) of the attrition products. Two experimental results appear to support previous treatments of impact erosion as brittle fracture in the purely elastic regime: (i) mass loss is proportional to kinetic energy, and this proportionality is a function of previously identified material properties; and (ii) attrition product GSDs are well described by a Weibull distribution. Other observations, however, including the development of shallow and surface-parallel cracks, indicate that the common fatigue failure model is inappropriate. Rather, we propose that Hertzian fracture is the dominant mechanism that distinguishes chipping from fragmentation. We also identify an initial phase of rapid mass loss in which attrition is independent of energy and material properties; this is a shape effect associated with removal of very sharp corners. The apparent universality of both mass loss curves and attrition-product GSDs requires further investigation. Nonetheless, these findings are useful for interpreting the contribution of in-stream attrition to downstream fining and the production of sand, resulting from bed-load transport of river pebbles.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


1996 ◽  
Vol 40 ◽  
pp. 813-818
Author(s):  
Minoru HARADA ◽  
Kazuo ASHIDA ◽  
Takashi DENO ◽  
Yuji OHMOTO

2016 ◽  
Vol 142 (5) ◽  
pp. 04016003 ◽  
Author(s):  
Carlos R. Wyss ◽  
Dieter Rickenmann ◽  
Bruno Fritschi ◽  
Jens M. Turowski ◽  
Volker Weitbrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document