scholarly journals The on-line coupled atmospheric chemistry model system MECO(n) – Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange including data interpolation via GRID (v1.0)

2018 ◽  
Vol 11 (3) ◽  
pp. 1059-1076 ◽  
Author(s):  
Astrid Kerkweg ◽  
Christiane Hofmann ◽  
Patrick Jöckel ◽  
Mariano Mertens ◽  
Gregor Pante

Abstract. As part of the Modular Earth Submodel System (MESSy), the Multi-Model-Driver (MMD v1.0) was developed to couple online the regional Consortium for Small-scale Modeling (COSMO) model into a driving model, which can be either the regional COSMO model or the global European Centre Hamburg general circulation model (ECHAM) (see Part 2 of the model documentation). The coupled system is called MECO(n), i.e., MESSy-fied ECHAM and COSMO models nested n times. In this article, which is part of the model documentation of the MECO(n) system, the second generation of MMD is introduced. MMD comprises the message-passing infrastructure required for the parallel execution (multiple programme multiple data, MPMD) of different models and the communication of the individual model instances, i.e. between the driving and the driven models. Initially, the MMD library was developed for a one-way coupling between the global chemistry–climate ECHAM/MESSy atmospheric chemistry (EMAC) model and an arbitrary number of (optionally cascaded) instances of the regional chemistry–climate model COSMO/MESSy. Thus, MMD (v1.0) provided only functions for unidirectional data transfer, i.e. from the larger-scale to the smaller-scale models.Soon, extended applications requiring data transfer from the small-scale model back to the larger-scale model became of interest. For instance, the original fields of the larger-scale model can directly be compared to the upscaled small-scale fields to analyse the improvements gained through the small-scale calculations, after the results are upscaled. Moreover, the fields originating from the two different models might be fed into the same diagnostic tool, e.g. the online calculation of the radiative forcing calculated consistently with the same radiation scheme. Last but not least, enabling the two-way data transfer between two models is the first important step on the way to a fully dynamical and chemical two-way coupling of the various model instances.In MMD (v1.0), interpolation between the base model grids is performed via the COSMO preprocessing tool INT2LM, which was implemented into the MMD submodel for online interpolation, specifically for mapping onto the rotated COSMO grid. A more flexible algorithm is required for the backward mapping. Thus, MMD (v2.0) uses the new MESSy submodel GRID for the generalised definition of arbitrary grids and for the transformation of data between them.In this article, we explain the basics of the MMD expansion and the newly developed generic MESSy submodel GRID (v1.0) and show some examples of the abovementioned applications.

2017 ◽  
Author(s):  
Astrid Kerkweg ◽  
Christiane Hofmann ◽  
Patrick Jöckel ◽  
Mariano Mertens ◽  
Gregor Pante

Abstract. This article is part of the model documentation of the MECO(n) system (MESSyfied ECHAM and COSMO models nested n-times). As part of the Modular Earth Submodel System (MESSy) the Multi-Model-Driver (MMD v1.0) was developed to couple on-line regional model instances into a driving model (see Part 2 of the model documentation). MMD comprises the message passing infrastructure required for the parallel execution (multiple program multiple data, MPMD) of different models and the communication of the individual model instances, i.e. between the driving and the driven models. Initially the MMD library was developed for a 1-way coupling between the global chemistry climate model EMAC and an arbitrary number of (optionally cascaded) instances of the regional chemistry climate model COSMO/MESSy. Thus MMD (v1.0) provided only functions for unidirectional data transfer, i.e., from the larger scale to the smaler scale models. Soon, extended applications requiring data transfer from the small-scale model back to the larger scale model became of interest: e.g., the original fields in the larger scale model can directly be compared to the up-scaled small-scale fields to analyse the gain by the original small-scale calculations, if the results are up-scaled. Secondly, the fields originating from the two different models might be fed into the same diagnostic tool, e.g. the on-line calculation of the radiative forcing calculated consistently with the same radiation scheme. Last but not least, enabling the 2-way data transfer between two models is the first important step on the way to a fully dynamically and chemically 2-way coupling of the various model instances. In MMD (v1.0) interpolation between the basemodel grids is performed via the COSMO pre-processing tool INT2LM, which was implemented as MMD submodel for on-line interpolation, specificially for mapping onto the rotated COSMO grid. A more flexible algorithm is required for the backward mapping. Thus, MMD (v2.0) uses the new MESSy submodel GRID for the generalised definition of arbitrary grids and for the transformation of data between them. In this article we explain the basics of the MMD expansion and the newly developed generic MESSy submodel GRID(v1.0) and show some examples of the applications mentioned above.


2016 ◽  
Author(s):  
Simone Dietmüller ◽  
Patrick Jöckel ◽  
Holger Tost ◽  
Markus Kunze ◽  
Cathrin Gellhorn ◽  
...  

Abstract. The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a basemodel via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT and ORBIT. The submodel RAD (with shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) on-line radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of on-line radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.


2013 ◽  
Vol 13 (4) ◽  
pp. 11395-11425 ◽  
Author(s):  
C. Brühl ◽  
J. Lelieveld ◽  
M. Höpfner ◽  
H. Tost

Abstract. A multiyear study with the atmospheric chemistry general circulation model EMAC with the aerosol module GMXe at high altitude resolution demonstrates that the sulfur gases COS and SO2, the latter from low-latitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. The model consistently uses the same parameters in the troposphere and stratosphere for 7 aerosol modes applied. Lower boundary conditions for COS and other long-lived trace gases are taken from measurement networks, while estimates of volcanic SO2 emissions are based on satellite observations. We show comparisons with satellite data for aerosol extinction (e.g. SAGE) and SO2 in the middle atmosphere (MIPAS on ENVISAT). This corroborates the interannual variability induced by the Quasi-Biennial Oscillation, which is internally generated by the model. The model also realistically simulates the radiative effects of stratospheric and tropospheric aerosol including the effects on the model dynamics. The medium strength volcanic eruptions of 2005 and 2006 exerted a nonnegligible radiative forcing of up to −0.6 W m−2 in the tropics, while the large Pinatubo eruption caused a maximum though short term tropical forcing of about −10 W m−2. The study also shows that observed upper stratospheric SO2 can be simulated accurately only when a sulphur sink on meteoritic dust is included and the photolysis of gaseous H2SO4 in the near infrared is higher than assumed previously.


2014 ◽  
Vol 7 (2) ◽  
pp. 1933-2006 ◽  
Author(s):  
T. P. C. van Noije ◽  
P. Le Sager ◽  
A. J. Segers ◽  
P. F. J. van Velthoven ◽  
M. C. Krol ◽  
...  

Abstract. We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.


2020 ◽  
Vol 20 (1) ◽  
pp. 281-301 ◽  
Author(s):  
Le Kuai ◽  
Kevin W. Bowman ◽  
Kazuyuki Miyazaki ◽  
Makoto Deushi ◽  
Laura Revell ◽  
...  

Abstract. The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6 µm ozone band is a fundamental quantity for understanding chemistry–climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit considerable variability in space and time that depend on the distributions of clouds, ozone (O3), water vapor (H2O), air temperature (Ta), and surface temperature (Ts). Benchmarking present-day fluxes and quantifying the relative influence of their drivers is the first step for estimating climate feedbacks from ozone radiative forcing and predicting radiative forcing evolution. To that end, we constructed observational instantaneous radiative kernels (IRKs) under clear-sky conditions, representing the sensitivities of the TOA flux in the 9.6 µm ozone band to the vertical distribution of geophysical variables, including O3, H2O, Ta, and Ts based upon the Aura Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels to present-day simulations from the Chemistry-Climate Model Initiative (CCMI) project as compared to a 2006 reanalysis assimilating satellite observations, we show that the models have large differences in TOA flux, attributable to different geophysical variables. In particular, model simulations continue to diverge from observations in the tropics, as reported in previous studies of the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) simulations. The principal culprits are tropical middle and upper tropospheric ozone followed by tropical lower tropospheric H2O. Five models out of the eight studied here have TOA flux biases exceeding 100 mW m−2 attributable to tropospheric ozone bias. Another set of five models have flux biases over 50 mW m−2 due to H2O. On the other hand, Ta radiative bias is negligible in all models (no more than 30 mW m−2). We found that the atmospheric component (AM3) of the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model and Canadian Middle Atmosphere Model (CMAM) have the lowest TOA flux biases globally but are a result of cancellation of opposite biases due to different processes. Overall, the multi-model ensemble mean bias is -133±98 mW m−2, indicating that they are too atmospherically opaque due to trapping too much radiation in the atmosphere by overestimated tropical tropospheric O3 and H2O. Having too much O3 and H2O in the troposphere would have different impacts on the sensitivity of TOA flux to O3 and these competing effects add more uncertainties on the ozone radiative forcing. We find that the inter-model TOA outgoing longwave radiation (OLR) difference is well anti-correlated with their ozone band flux bias. This suggests that there is significant radiative compensation in the calculation of model outgoing longwave radiation.


2014 ◽  
Vol 7 (5) ◽  
pp. 2435-2475 ◽  
Author(s):  
T. P. C. van Noije ◽  
P. Le Sager ◽  
A. J. Segers ◽  
P. F. J. van Velthoven ◽  
M. C. Krol ◽  
...  

Abstract. We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.


2011 ◽  
Vol 11 (17) ◽  
pp. 9303-9322 ◽  
Author(s):  
J. M. English ◽  
O. B. Toon ◽  
M. J. Mills ◽  
F. Yu

Abstract. Using a three-dimensional general circulation model with sulfur chemistry and sectional aerosol microphysics (WACCM/CARMA), we studied aerosol formation and microphysics in the upper troposphere and lower stratosphere (UTLS) as well as the middle and upper stratosphere based on three nucleation schemes (two binary homogeneous schemes and an ion-mediated scheme related to one of the binary schemes). Simulations suggest that ion-mediated nucleation rates in the UTLS are 25 % higher than its related binary scheme, but that the rates predicted by the two binary schemes vary by two orders of magnitude. None of the nucleation schemes is superior at matching the limited observations available at the smallest sizes. However, it is found that coagulation, not nucleation, controls number concentration at sizes greater than approximately 10 nm. Therefore, based on this study, processes relevant to atmospheric chemistry and radiative forcing in the UTLS are not sensitive to the choice of nucleation schemes. The dominance of coagulation over other microphysical processes in the UTLS is consistent with other recent work using microphysical models. Simulations using all three nucleation schemes compare reasonably well to observations of size distributions, number concentration across latitude, and vertical profiles of particle mixing ratio in the UTLS. Interestingly, we find that we need to include Van der Waals forces in our coagulation scheme to match the UTLS aerosol concentrations. We conclude that this model can reasonably represent sulfate microphysical processes in the UTLS, and that the properties of particles at atmospherically relevant sizes appear to be insensitive to the details of the nucleation scheme. We also suggest that micrometeorites, which are not included in this model, dominate the aerosol properties in the upper stratosphere above about 30 km.


2011 ◽  
Vol 4 (2) ◽  
pp. 1305-1358 ◽  
Author(s):  
A. Kerkweg ◽  
P. Jöckel

Abstract. The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a~new, limited-area atmospheric chemistry model. This model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented. Previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the tracer transport characteristics of the new COSMO/MESSy model system, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.


2016 ◽  
Vol 9 (6) ◽  
pp. 2209-2222 ◽  
Author(s):  
Simone Dietmüller ◽  
Patrick Jöckel ◽  
Holger Tost ◽  
Markus Kunze ◽  
Catrin Gellhorn ◽  
...  

Abstract. The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT, and ORBIT. The submodel RAD (including the shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) online radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of online radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.


Sign in / Sign up

Export Citation Format

Share Document