scholarly journals CTDAS-Lagrange v1.0: a high-resolution data assimilation system for regional carbon dioxide observations

2018 ◽  
Vol 11 (8) ◽  
pp. 3515-3536 ◽  
Author(s):  
Wei He ◽  
Ivar R. van der Velde ◽  
Arlyn E. Andrews ◽  
Colm Sweeney ◽  
John Miller ◽  
...  

Abstract. We have implemented a regional carbon dioxide data assimilation system based on the CarbonTracker Data Assimilation Shell (CTDAS) and a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). With this system, named CTDAS-Lagrange, we simultaneously optimize terrestrial biosphere fluxes and four parameters that adjust the lateral boundary conditions (BCs) against CO2 observations from the NOAA ESRL North America tall tower and aircraft programmable flask packages (PFPs) sampling program. Least-squares optimization is performed with a time-stepping ensemble Kalman smoother, over a time window of 10 days and assimilating sequentially a time series of observations. Because the WRF-STILT footprints are pre-computed, it is computationally efficient to run the CTDAS-Lagrange system. To estimate the uncertainties in the optimized fluxes from the system, we performed sensitivity tests with various a priori biosphere fluxes (SiBCASA, SiB3, CT2013B) and BCs (optimized mole fraction fields from CT2013B and CTE2014, and an empirical dataset derived from aircraft observations), as well as with a variety of choices on the ways that fluxes are adjusted (additive or multiplicative), covariance length scales, biosphere flux covariances, BC parameter uncertainties, and model–data mismatches. In pseudo-data experiments, we show that in our implementation the additive flux adjustment method is more flexible in optimizing net ecosystem exchange (NEE) than the multiplicative flux adjustment method, and our sensitivity tests with real observations show that the CTDAS-Lagrange system has the ability to correct for the potential biases in the lateral BCs and to resolve large biases in the prior biosphere fluxes. Using real observations, we have derived a range of estimates for the optimized carbon fluxes from a series of sensitivity tests, which places the North American carbon sink for the year 2010 in a range from −0.92 to −1.26 PgC yr−1. This is comparable to the TM5-based estimates of CarbonTracker (version CT2016, -0.91±1.10 PgC yr−1) and CarbonTracker Europe (version CTE2016, -0.91±0.31 PgC yr−1). We conclude that CTDAS-Lagrange can offer a versatile and computationally attractive alternative to these global systems for regional estimates of carbon fluxes, which can take advantage of high-resolution Lagrangian footprints that are increasingly easy to obtain.

2017 ◽  
Author(s):  
Wei He ◽  
Ivar R. van der Velde ◽  
Arlyn E. Andrews ◽  
Colm Sweeney ◽  
John Miller ◽  
...  

Abstract. We have implemented a regional carbon dioxide data assimilation system based on the CarbonTracker Data Assimilation Shell (CTDAS) and a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). With this system, named as CTDAS‑Lagrange, we simultaneously optimize terrestrial biosphere fluxes and four parameters that adjust the lateral boundary conditions (BCs) against CO2 observations from the NOAA ESRL North America tall tower and aircraft Programmable Flask Packages (PFPs) sampling program. Least-squares optimization is performed with a time-stepping ensemble Kalman smoother, over a time window of 10 days and assimilating sequentially a time series of observations. Because the WRF-STILT footprints are pre-computed, it is computationally efficient to run the CTDAS-Lagrange system. To estimate the uncertainties of the optimized fluxes from the system, we performed sensitivity tests with various a priori biosphere fluxes (SiBCASA, SiB3, CT2013B) and BCs (optimized mole fraction fields from CT2013B and CTE2014, and an empirical data set derived from aircraft observations), as well as with a variety of choices on the ways that fluxes are adjusted (additive or multiplicative), covariance length scales, biosphere flux covariances, BC parameter uncertainties, and model-data mismatches. In pseudo-data experiments, we show that in our implementation the additive flux adjustment method is more flexible in optimizing NEE than the multiplicative flux adjustment method, and that the CTDAS-Lagrange system has the ability to correct for the potential biases in the lateral boundary conditions and to resolve large biases in the prior biosphere fluxes. Using real observations, we have derived a range of estimates for the optimized carbon fluxes from a series of sensitivity tests, which places the North American carbon sink for the year 2010 in a range from −0.92 to −1.26 PgC/yr. This is comparable to the TM5-based estimates of CarbonTracker (version CT2016, −0.91 ± 1.10 PgC/yr) and CarbonTracker Europe (version CTE2016, −0.91 ± 0.31 PgC/yr). We conclude that CTDAS-Lagrange can offer a versatile and computationally attractive alternative to these global systems for regional estimates of carbon fluxes, which can take advantage of high-resolution Lagrangian footprints that are increasingly easy to obtain.


2020 ◽  
Vol 21 (9) ◽  
pp. 2023-2039
Author(s):  
Dikra Khedhaouiria ◽  
Stéphane Bélair ◽  
Vincent Fortin ◽  
Guy Roy ◽  
Franck Lespinas

AbstractConsistent and continuous fields provided by precipitation analyses are valuable for hydrometeorological applications and land data assimilation modeling, among others. Providing uncertainty estimates is a logical step in the analysis development, and a consistent approach to reach this objective is the production of an ensemble analysis. In the present study, a 6-h High-Resolution Ensemble Precipitation Analysis (HREPA) was developed for the domain covering Canada and the northern part of the contiguous United States. The data assimilation system is the same as the Canadian Precipitation Analysis (CaPA) and is based on optimal interpolation (OI). Precipitation from the Canadian national 2.5-km atmospheric prediction system constitutes the background field of the analysis, while at-site records and radar quantitative precipitation estimates (QPE) compose the observation datasets. By using stochastic perturbations, multiple observations and background field random realizations were generated to subsequently feed the data assimilation system and provide 24 HREPA members plus one control run. Based on one summer and one winter experiment, HREPA capabilities in terms of bias and skill were verified against at-site observations for different climatic regions. The results indicated HREPA’s reliability and skill for almost all types of precipitation events in winter, and for precipitation of medium intensity in summer. For both seasons, HREPA displayed resolution and sharpness. The overall good performance of HREPA and the lack of ensemble precipitation analysis (PA) at such spatiotemporal resolution in the literature motivate further investigations on transitional seasons and more advanced perturbation approaches.


2018 ◽  
Vol 11 (1) ◽  
pp. 283-304 ◽  
Author(s):  
Ivar R. van der Velde ◽  
John B. Miller ◽  
Michiel K. van der Molen ◽  
Pieter P. Tans ◽  
Bruce H. Vaughn ◽  
...  

Abstract. To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.


2011 ◽  
Vol 11 (12) ◽  
pp. 31523-31583 ◽  
Author(s):  
K. Miyazaki ◽  
H. J. Eskes ◽  
K. Sudo

Abstract. A data assimilation system has been developed to estimate global nitrogen oxides (NOx) emissions using OMI tropospheric NO2 columns (DOMINO product) and a global chemical transport model (CTM), CHASER. The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NOx emissions with a horizontal resolution of 2.8° during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over Eastern China, the Eastern United States, Southern Africa, and Central-Western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO2 columns and vertical NO2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO2 fields; this implies that the data assimilation system efficiently derives NOx emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NOx sources from top-down approaches.


2017 ◽  
Author(s):  
Ivar R. van der Velde ◽  
John B. Miller ◽  
Michiel K. van der Molen ◽  
Pieter P. Tans ◽  
Bruce H. Vaughn ◽  
...  

Abstract. To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models we present here a first multi-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2/12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions. The multi-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions. With this system we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes, nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but potentially also to function as a data driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.


2015 ◽  
Vol 47 (5) ◽  
pp. 051401
Author(s):  
Yoichi Ishikawa ◽  
Teiji In ◽  
Satoshi Nakada ◽  
Kei Nishina ◽  
Hiromichi Igarashi ◽  
...  

2014 ◽  
Vol 14 (23) ◽  
pp. 13281-13293 ◽  
Author(s):  
X. Tian ◽  
Z. Xie ◽  
Y. Liu ◽  
Z. Cai ◽  
Y. Fu ◽  
...  

Abstract. We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.


Sign in / Sign up

Export Citation Format

Share Document