scholarly journals Configuration and intercomparison of deep learning neural models for statistical downscaling

2020 ◽  
Vol 13 (4) ◽  
pp. 2109-2124 ◽  
Author(s):  
Jorge Baño-Medina ◽  
Rodrigo Manzanas ◽  
José Manuel Gutiérrez

Abstract. Deep learning techniques (in particular convolutional neural networks, CNNs) have recently emerged as a promising approach for statistical downscaling due to their ability to learn spatial features from huge spatiotemporal datasets. However, existing studies are based on complex models, applied to particular case studies and using simple validation frameworks, which makes a proper assessment of the (possible) added value offered by these techniques difficult. As a result, these models are usually seen as black boxes, generating distrust among the climate community, particularly in climate change applications. In this paper we undertake a comprehensive assessment of deep learning techniques for continental-scale statistical downscaling, building on the VALUE validation framework. In particular, different CNN models of increasing complexity are applied to downscale temperature and precipitation over Europe, comparing them with a few standard benchmark methods from VALUE (linear and generalized linear models) which have been traditionally used for this purpose. Besides analyzing the adequacy of different components and topologies, we also focus on their extrapolation capability, a critical point for their potential application in climate change studies. To do this, we use a warm test period as a surrogate for possible future climate conditions. Our results show that, while the added value of CNNs is mostly limited to the reproduction of extremes for temperature, these techniques do outperform the classic ones in the case of precipitation for most aspects considered. This overall good performance, together with the fact that they can be suitably applied to large regions (e.g., continents) without worrying about the spatial features being considered as predictors, can foster the use of statistical approaches in international initiatives such as Coordinated Regional Climate Downscaling Experiment (CORDEX).

2019 ◽  
Author(s):  
Jorge Baño-Medina ◽  
Rodrigo Manzanas ◽  
José Manuel Gutiérrez

Abstract. Deep learning techniques (in particular convolutional neural networks, CNNs) have recently emerged as a promising approach for statistical downscaling due to their ability to learn spatial features from huge spatio-temporal datasets. However, existing studies are based on complex models, applied to particular case studies and using simple validation frameworks, which makes difficult a proper assessment of the (possible) added value offered by these techniques. As a result, these models are usually seen as black-boxes generating distrust among the climate community, particularly in climate change problems. In this paper we undertake a comprehensive assessment of deep learning techniques for continental-scale statistical downscaling, building on the VALUE validation framework. In particular, different CNN models of increasing complexity are applied for downscaling temperature and precipitation over Europe, comparing them with a few standard benchmark methods from VALUE (linear and generalized linear models) which have been traditionally used for this purpose. Besides analyzing the adequacy of different components and topologies, we also focus on their extrapolation capability, a critical point for their possible application in climate change studies. To do this, we use a warm test period as surrogate of possible future climate conditions. Our results show that, whilst the added value of CNNs is mostly limited to the reproduction of extremes for temperature, these techniques do outperform the classic ones for the case of precipitation for most aspects considered. This overall good performance, together with the fact that they can be suitably applied to large regions (e.g. continents) without worrying about the spatial features being considered as predictors, can foster the use of statistical approaches in international initiatives such as CORDEX.


2007 ◽  
Vol 88 (3) ◽  
pp. 375-384 ◽  
Author(s):  
E. S. Takle ◽  
J. Roads ◽  
B. Rockel ◽  
W. J. Gutowski ◽  
R. W. Arritt ◽  
...  

A new approach, called transferability intercomparisons, is described for advancing both understanding and modeling of the global water cycle and energy budget. Under this approach, individual regional climate models perform simulations with all modeling parameters and parameterizations held constant over a specific period on several prescribed domains representing different climatic regions. The transferability framework goes beyond previous regional climate model intercomparisons to provide a global method for testing and improving model parameterizations by constraining the simulations within analyzed boundaries for several domains. Transferability intercomparisons expose the limits of our current regional modeling capacity by examining model accuracy on a wide range of climate conditions and realizations. Intercomparison of these individual model experiments provides a means for evaluating strengths and weaknesses of models outside their “home domains” (domain of development and testing). Reference sites that are conducting coordinated measurements under the continental-scale experiments under the Global Energy and Water Cycle Experiment (GEWEX) Hydrometeorology Panel provide data for evaluation of model abilities to simulate specific features of the water and energy cycles. A systematic intercomparison across models and domains more clearly exposes collective biases in the modeling process. By isolating particular regions and processes, regional model transferability intercomparisons can more effectively explore the spatial and temporal heterogeneity of predictability. A general improvement of model ability to simulate diverse climates will provide more confidence that models used for future climate scenarios might be able to simulate conditions on a particular domain that are beyond the range of previously observed climates.


Author(s):  
Ivo Machar ◽  
Marián Halás ◽  
Zdeněk Opršal

Regional climate changes impacts induce vegetation zones shift to higher altitudes in temperate landscape. This paper deals with applying of regional biogeography model of climate conditions for vegetation zones in Czechia to doctoral programme Regional Geography in Palacky University Olomouc. The model is based on general knowledge of landscape vegetation zonation. Climate data for model come from predicted validated climate database under RCP8.5 scenario since 2100. Ecological data are included in the Biogeography Register database (geobiocoenological data related to landscape for cadastral areas of the Czech Republic). Mathematical principles of modelling are based on set of software solutions with GIS. Students use the model in the frame of the course “Special Approaches to Landscape Research” not only for regional scenarios climate change impacts in landscape scale, but also for assessment of climate conditions for growing capability of agricultural crops or forest trees under climate change on regional level.


2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


2017 ◽  
Vol 49 (11-12) ◽  
pp. 3813-3838 ◽  
Author(s):  
Thierry C. Fotso-Nguemo ◽  
Derbetini A. Vondou ◽  
Wilfried M. Pokam ◽  
Zéphirin Yepdo Djomou ◽  
Ismaïla Diallo ◽  
...  

2021 ◽  
Author(s):  
Maria Chara Karypidou ◽  
Eleni Katragkou ◽  
Stefan Pieter Sobolowski

Abstract. The region of southern Africa (SAF) is highly vulnerable to the impacts of climate change and is projected to experience severe precipitation shortages in the coming decades. Ensuring that our modelling tools are fit for the purpose of assessing these changes is critical. In this work we compare a range of satellite products along with gauge-based datasets. Additionally, we investigate the behaviour of regional climate simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX) – Africa domain, along with simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6). We identify considerable variability in the standard deviation of precipitation between satellite products that merge with rain gauges and satellite products that do not, during the rainy season (Oct–Mar), indicating high observational uncertainty for specific regions over SAF. Good agreement both in spatial pattern and the strength of the calculated trends is found between satellite and gauge-based products, however. Both CORDEX-Africa and CMIP5 ensembles underestimate the observed trends during the analysis period. The CMIP6 ensemble displayed persistent drying trends, in direct contrast to the observations. The regional ensemble exhibited improved performance compared to its forcing (CMIP5), when the annual cycle and the extreme precipitation indices were examined, confirming the added value of the higher resolution regional climate simulations. The CMIP6 ensemble displayed a similar behaviour to CMIP5, however reducing slightly the ensemble spread. However, we show that reproduction of some key SAF phenomena, like the Angolan Low (which exerts a strong influence on regional precipitation), still poses a challenge for the global and regional models. This is likely a result of the complex climatic process that take place. Improvements in observational networks (both in-situ and satellite), as well as continued advancements in high-resolution modelling will be critical, in order to develop a robust assessment of climate change for southern Africa.


2013 ◽  
Vol 6 (5) ◽  
pp. 1429-1445 ◽  
Author(s):  
M. Trail ◽  
A. P. Tsimpidi ◽  
P. Liu ◽  
K. Tsigaridis ◽  
Y. Hu ◽  
...  

Abstract. Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF) model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM) to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Wolfgang Falk ◽  
Nils Hempelmann

Climate is the main environmental driver determining the spatial distribution of most tree species at the continental scale. We investigated the distribution change of European beech and Norway spruce due to climate change. We applied a species distribution model (SDM), driven by an ensemble of 21 regional climate models in order to study the shift of the favourability distribution of these species. SDMs were parameterized for 1971–2000, as well as 2021–2050 and 2071–2100 using the SRES scenario A1B and three physiological meaningful climate variables. Growing degree sum and precipitation sum were calculated for the growing season on a basis of daily data. Results show a general north-eastern and altitudinal shift in climatological favourability for both species, although the shift is more marked for spruce. The gain of new favourable sites in the north or in the Alps is stronger for beech compared to spruce. Uncertainty is expressed as the variance of the averaged maps and with a density function. Uncertainty in species distribution increases over time. This study demonstrates the importance of data ensembles and shows how to deal with different outcomes in order to improve impact studies by showing uncertainty of the resulting maps.


Sign in / Sign up

Export Citation Format

Share Document