scholarly journals A multi-isotope model for simulating soil organic carbon cycling in eroding landscapes (WATEM_C v1.0)

2020 ◽  
Vol 13 (10) ◽  
pp. 4977-4992
Author(s):  
Zhengang Wang ◽  
Jianxiu Qiu ◽  
Kristof Van Oost

Abstract. There is increasing recognition that lateral soil organic carbon (SOC) fluxes due to erosion have imposed an important impact on the global C cycling. Field and experimental studies have been conducted to investigate this topic. It is useful to have a modeling tool that takes into account various soil properties and has flexible resolution and scale options so that it can be widely used to study relevant processes and evaluate the effect of soil erosion on SOC cycling. This study presents a model that is capable of simulating SOC cycling in landscapes that are subjected to erosion. It considers all three C isotopes (12C, 13C and 14C) with flexible time steps and a detailed vertical solution of the soil profile. The model also represents radionuclide cycling in soils that can assist in constraining the lateral and vertical redistribution of soil particles within landscapes. The model gives a three-dimensional representation of soil properties including 137Cs activity, SOC stock, and δ13C and Δ14C values. Using the same C cycling processes in stable, eroding and depositional areas, our model is able to reproduce the observed spatial and vertical patterns of C contents, δ13C values, and Δ14C values. This indicates that at the field scale with a similar C decomposition rate, physical soil redistribution is the main cause of the spatial variability of these C metrics.

2019 ◽  
Author(s):  
Zhengang Wang ◽  
Kristof Van Oost

Abstract. There is increasing recognition that lateral soil organic carbon (SOC) fluxes due to erosion have imposed an important impact on the global C cycling. Field and experimental studies have been conducted to investigate this topic. It is useful to have a modelling tool that takes into account various soil properties and has flexible resolution and scale options, so that it can be widely used to study relevant processes and evaluate the effect of soil erosion on SOC cycling. This study presents a model that is capable of simulating SOC cycling on a dynamic landscape. It considers all the three C isotopes (12C, 13C and 14C) with flexible time step and vertical solution of the soil profile. The model gives a 3D representation of soil properties such as 137Cs activity, SOC stock, and δ13C and Δ14C values. Using the same C cycling processes in stable, eroding and depositional areas, our model is able to reproduce the observed spatial and vertical patterns of C, δ13C values and Δ14C values. This indicates that physical soil redistribution is the main cause of the spatial variability of these C metrics.


2020 ◽  
Author(s):  
Tobias Rentschler ◽  
Martin Bartelheim ◽  
Marta Díaz-Zorita Bonilla ◽  
Philipp Gries ◽  
Thomas Scholten ◽  
...  

<p>Soils and soil functions are recognized as a key resource for human well-being throughout time. In an agricultural and forestry perspective, soil functions contribute to food and timber production. Other soil functions are related to freshwater security and energy provisioning. In general, the capacity of a soil to function within specific boundaries is summarised as soil quality. Knowledge about the spatial distribution of soil quality is crucial for sustainable land use and the protection of soils and their functions. This spatial knowledge can be obtained with accurate and efficient machine-learning-based soil mapping approaches, which allow the estimation of the soil quality at distinct locations. However, the vertical distribution of soil properties is usually neglected when assessing soil quality at distinct locations. To overcome such limitations, the depth function of soil properties needs to be incorporated in the modelling. This is not only important to get a better estimation of the overall soil quality throughout the rooting zone, but also to identify factors that limit plant growth, such as strong acidity or alkalinity, and the water holding capacity. Thus, the objective of this study was to model and map the soil quality indicators pH, soil organic carbon, sand, silt and clay content as a volumetric entity. The study area is located in southern Spain in the Province of Seville at the Guadalquivir river. It covers 1,000 km<sup>2</sup> of farmland, citrus and olive plantations, pastures and wood pasture (Dehesa) in the Sierra Morena mountain range, at the Guadalquivir flood plain and tertiary terraces. Soil samples were taken at 130 soil profiles in five depths (or less at shallow soils). The profiles were randomly stratified depending on slope position and land cover. We used a subset of 99 samples from representative soil profiles to assess the overall 513 samples with FT-IR spectroscopy and machine learning methods to model equal-area spline, polynomial and exponential depth functions for each soil quality indicator at each of the 130 profiles. These depth functions were modelled and predicted spatially with a comprehensive set of environmental covariates from remote sensing data, multi-scale terrain analysis and geological maps. By solving the spatially predicted depth functions with a vertical resolution of 5 cm, we obtained a volumetric, i.e. three-dimensional, map of pH, soil organic carbon content and soil texture. Preliminary results are promising for volumetric soil mapping and the estimation of soil quality and limiting factors in three-dimensional space.</p>


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


2016 ◽  
Vol 8 (10) ◽  
pp. 1003 ◽  
Author(s):  
Rui Zhou ◽  
Xianzhang Pan ◽  
Hongxu Wei ◽  
Xianli Xie ◽  
Changkun Wang ◽  
...  

2021 ◽  
Author(s):  
Zhe (Han) Weng ◽  
Lukas Van Zwieten ◽  
Michael Rose ◽  
Bhupinder Pal Singh ◽  
Ehsan Tavakkoli ◽  
...  

Abstract The soil carbon saturation concept suggests an upper limit to store soil organic carbon (SOC), set by the mechanisms that protect soil organic matter from decomposition. Biochar has the capacity to protect new C including rhizodeposits and microbial necromass. However, the decadal scale mechanisms by which biochar influences the molecular diversity, spatial heterogeneity, and temporal changes of SOC persistence remain unresolved. Here we show that the soil C saturation ceiling of a Ferralsol under subtropical pasture could be elevated by 2 Mg (new) C ha-1 by the application of Eucalyptus saligna biochar 8.2 years after the first application. Using one, two-, and three-dimensional analyses, significant increases were observed in the spatial distribution of root-derived 13C in microaggregates (53-250 µm, 11 %) and new C protected in mineral fractions (<53 µm, 5 %). Microbial C-use efficiency was concomitantly improved by lowering specific enzyme activities, contributing to the decreased mineralization of native SOC by 18 %. We provide evidence that the global SOC ceiling can be elevated using biochar in Ferralsols by 0.01-0.1 Pg new C yr-1.


Sign in / Sign up

Export Citation Format

Share Document