scholarly journals Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)

2021 ◽  
Vol 14 (1) ◽  
pp. 151-175
Author(s):  
Brigitta Szabó ◽  
Melanie Weynants ◽  
Tobias K. D. Weber

Abstract. Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil properties with pedotransfer functions (PTFs), when those are needed for catchment, regional or continental scale applications. When predicted soil hydraulic parameters are used for the modelling of the state and flux of water in soils, uncertainty of the computed values can provide more detailed information when drawing conclusions. The aim of this study was to update the previously published European PTFs (Tóth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into the transfer functions. The new set of algorithms was derived for point predictions of soil water content at saturation (0 cm matric potential head), field capacity (both −100 and −330 cm matric potential head), wilting point (−15 000 cm matric potential head), plant available water, and saturated hydraulic conductivity, as well as the Mualem–van Genuchten model parameters of the moisture retention and hydraulic conductivity curve. The minimum set of input properties for the prediction is soil depth and sand, silt and clay content. The effect of including additional information like soil organic carbon content, bulk density, calcium carbonate content, pH and cation exchange capacity were extensively analysed. The PTFs were derived adopting the random forest method. The advantage of the new PTFs is that they (i) provide information about prediction uncertainty, (ii) are significantly more accurate than the euptfv1, (iii) can be applied for more predictor variable combinations than the euptfv1, 32 instead of 5, and (iv) are now also derived for the prediction of water content at −100 cm matric potential head and plant available water content. A practical guidance on how to use the derived PTFs is provided.

Author(s):  
Brigitta Szabó ◽  
Melanie Weynants ◽  
Tobias KD Weber

Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil properties with pedotransfer functions (PTFs), when those are needed for catchment, regional or continental scale applications. When predicted soil hydraulic parameters are used for the modelling of the state and flux of water in soils, uncertainty of the computed values can provide more detailed information when drawing conclusions. The aim of this study was to update the previously published European PTFs (Tóth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into the transfer functions. The new set of algorithms was derived for point predictions of soil water content at saturation (0 cm matric potential head), field capacity (both -100 and -330 cm matric potential head), wilting point (-15.000 cm matric potential head), plant available water, and saturated hydraulic conductivity, as well as the Mualem-van Genuchten model parameters of the moisture retention and hydraulic conductivity curve. The minimum set of input properties for the prediction is soil depth and sand, silt and clay content. The effect of including additional information like soil organic carbon content, bulk density, calcium carbonate content, pH and cation exchange capacity were extensively analysed. The PTFs were derived adopting the random forest method. The advantage of the new PTFs is that they i) provide information about prediction uncertainty, ii) are significantly more accurate than the euptfv1, iii) can be applied for more predictor variable combinations than the euptfv1, 32 instead of 5, and iv) are now also derived for the prediction of water content at -100 cm matric potential head and plant available water content.


2020 ◽  
Author(s):  
Brigitta Szabó ◽  
Melanie Weynants ◽  
Tobias K. D. Weber

Abstract. Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil properties with pedotransfer functions (PTFs), when those are needed for catchment, regional or continental scale applications. When predicted soil hydraulic parameters are used for the modelling of the state and flux of water in soils, uncertainty of the computed values can provide more detailed information when drawing conclusions. The aim of this study was to update the previously published European PTFs (Tóth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into the transfer functions. The new set of algorithms was derived for point predictions of soil water content at saturation (0 cm matric potential head), field capacity (both −100 and −330 cm matric potential head), wilting point (−15.000 cm matric potential head), plant available water, and saturated hydraulic conductivity, as well as the Mualem-van Genuchten model parameters of the moisture retention and hydraulic conductivity curve. The minimum set of input properties for the prediction is soil depth and sand, silt and clay content. The effect of including additional information like soil organic carbon content, bulk density, calcium carbonate content, pH and cation exchange capacity were extensively analysed. The PTFs were derived adopting the random forest method. The advantage of the new PTFs is that they i) provide information about prediction uncertainty, ii) are significantly more accurate than the euptfv1, iii) can be applied for more predictor variable combinations than the euptfv1, 32 instead of 5, and iv) are now also derived for the prediction of water content at −100 cm matric potential head and plant available water content.


2021 ◽  
Author(s):  
Brigitta Szabó ◽  
Melanie Weynants ◽  
Tobias Weber

<p>We present improved European hydraulic pedotransfer functions (PTFs) which now use the machine learning algorithm random forest and include prediction uncertainties. The new PTFs (euptfv2) are an update of the previously published euptfv1 (Tóth et al., 2015). With the derived hydraulic PTFs soil hydraulic properties and van Genuchten-Mualem model parameters can be predicted from easily available soil properties. The updated PTFs perform significantly better than euptfv1 and are applicable for 32 predictor variables combinations. The uncertainties reflect uncertainties from the considered input data, predictors and the applied algorithm. The euptfv2 includes transfer functions to compute soil water content at saturation (0 cm matric potential head), field capacity (both -100 and -330 cm matric potential head) and wilting point (-15,000 cm matric potential head), plant available water content computed with field capacity at -100 and -330 cm matric potential head, saturated hydraulic conductivity, and Mualem-van Genuchten parameters of the moisture retention and hydraulic conductivity curves. The influence of predictor variables on predicted soil hydraulic properties is explored and suggestions to best predictor variables given.</p><p>The algorithms have been implemented in a web interface (https://ptfinterface.rissac.hu) and an R package (https://doi.org/10.5281/ZENODO.3759442) to facilitate the use of the PTFs, where the PTFs’ selection is automated based on soil properties available for the predictions and required soil hydraulic property.</p><p>The new PTFs will be applied to derive soil hydraulic properties for field- and catchment- scale hydrological modelling in European case studies of the OPTAIN project (https://www.optain.eu/). Functional evaluation of the PTFs is performed under the iAqueduct research project.</p><p> </p><p>This research has been supported by the Hungarian National Research, Development and Innovation Office (grant no. KH124765), the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (grant no. BO/00088/18/4), and the German Research Foundation (grant no. SFB 1253/12017). OPTAIN is funded by the European Union’s Horizon 2020 Program for research and innovation under Grant Agreement No. 862756.</p>


2020 ◽  
Vol 34 (3) ◽  
pp. 310-324
Author(s):  
Leonardo Ezequiel Scherger ◽  
Victoria Zanello ◽  
Claudio Lexow

The aim of this work is to compare the use of the inverse solution approach in the estimation of soil hydraulic properties with traditional tension disk infiltrometer (TDI) data analysis, field retention data and commonly used pedotransfer functions (PTFs). Field data were collected in an experimental plot located at Bahía Blanca, Argentina. Field infiltration under saturated conditions was measured by the inverse auger hole method and infiltration under unsaturated conditions were carried out with TDI. Field retention data (θ(h)) were also collected periodically. The HYDRUS 2D/3D software was used to optimize soil hydraulic parameters by inverse solution according to TDI data. The saturated hydraulic conductivity measured by inverse auger hole method (5.53 cm.h-1) and calculated by Wooding analytical approach (5.35 cm.h-1) and inverse numerical simulations (5.36 cm.h-1) showed very close values. According to macroporosity estimates infiltrated water is mainly conducted through soils micro and mesopores.  Macropores only channeled 15.9% of total infiltrated flow.  Soil water retention curves (SWRC) predicted by PTFs did not represented correctly field retention data. The best adjustment between water content at specific pressure heads predicted by SWRCs and field measured water content was reached by the TDI inverse solution approach (RMSE: 0.050 cm3.cm-3). The inverse solution approach probed to be a simple and practical method to obtain an accurate estimate of both, SWRC and hydraulic conductivity curve.


Soil Research ◽  
2013 ◽  
Vol 51 (2) ◽  
pp. 94 ◽  
Author(s):  
Rogerio Cichota ◽  
Iris Vogeler ◽  
Val O. Snow ◽  
Trevor H. Webb

Modelling water and solute transport through soil requires the characterisation of the soil hydraulic functions; however, determining these functions based on measurements is time-consuming and costly. Pedotransfer functions (PTFs), which make use of easily measurable soil properties to predict the hydraulic functions, have been proposed as an alternative to measurements. The better known and more widely used PTFs were developed in the USA or Europe, where large datasets exist. No specific PTFs have been published for New Zealand soils. To address this gap, we evaluated a range of published PTFs against an available dataset comprising a range of different soils from New Zealand and selected the best PTFs to construct an ensemble PTF (ePTF). Assessment (and adjustment when required) of published PTFs was done by comparing measurements and estimates of soil water content and the hydraulic conductivity at selected matric suction values. For each point, the best two or three PTFs were chosen to compose the ePTF, with correcting constants if needed. The outputs of the ePTF are the hydraulic properties at selected matric suctions, akin to obtaining measurements, thus allowing the fit of different equations as well as combining any available measurements. Testing of the ePTF showed promising performance, with reasonably accurate estimates of the water retention of an independent dataset. Root mean square error values averaged 0.06 m3 m–3 for various New Zealand soils, which is within the accuracy level of published PTF studies. The largest errors were found for soils with high clay content, for which the ePTF should be used with care. The performance of the ePTF for estimating soil hydraulic conductivity was not as reliable as for water content, exhibiting large scatter. Predictions of saturated hydraulic conductivity were of the same magnitude as the measurements, whereas the unsaturated values were generally under-predicted. The conductivity data available for this study were limited and highly variable. The estimates for hydraulic conductivity should therefore be used with much care, and future research should address measurements and analysis to improve the predictions. The ePTF was also used to parameterise the SWIM soil module for use in Agricultural Production Systems Simulator (APSIM) simulations. Comparisons of drainage predicted by APSIM against results from lysimeter experiments suggest that the use of the derived ePTF is suited for the estimation of soil parameters for use in modelling. The ePTF is not envisaged as a substitute for measurements but is a useful tool to complement datasets with limited amounts of measured data.


2021 ◽  
Author(s):  
Michael Bitterlich ◽  
Richard Pauwels

<p>Hydraulic properties of mycorrhizal soils have rarely been reported and difficulties in directly assigning potential effects to hyphae of arbuscular mycorrhizal fungi (AMF) arise from other consequences of AMF being present, i.e. their influence on growth and water consumption rates of their host plants that both also influence soil hydraulic properties.</p><p>We assumed that the typical nylon meshes used for root-exclusion experiments in mycorrhizal research can provide a dynamic hydraulic barrier. It is expected that the uniform pore size of the rigid meshes causes a sudden hydraulic decoupling of the enmeshed inner volume from the surrounding soil as soon as the mesh pores become air-filled. Growing plants below the soil moisture threshold for hydraulic decoupling would minimize plant-size effects on root-exclusion compartments and allow for a more direct assignment of hyphal presence to modulations in soil hydraulic properties.</p><p>We carried out water retention and hydraulic conductivity measurements with two tensiometers introduced in two different heights in a cylindrical compartment (250 cm³) containing a loamy sand, either with or without the introduction of a 20 µm nylon mesh equidistantly between the tensiometers. Introduction of a mesh reduced hydraulic conductivity across the soil volumes by two orders of magnitude from 471 to 6 µm d<sup>-1</sup> at 20% volumetric water content.</p><p>We grew maize plants inoculated or not with Rhizophagus irregularis in the same soil in pots that contained root-exclusion compartments while maintaining 20% volumetric water content. When hyphae were present in the compartments, water potential and unsaturated hydraulic conductivity increased for a given water content compared to compartments free of hyphae. These differences increased with progressive soil drying.</p><p>We conclude that water extractability from soils distant to roots can be facilitated under dry conditions when AMF hyphae are present.</p><p> </p>


2019 ◽  
Vol 62 (2) ◽  
pp. 289-301
Author(s):  
Amjad T. Assi ◽  
Rabi H. Mohtar ◽  
Erik F. Braudeau ◽  
Cristine L. S. Morgan

Abstract. The purpose of this study was to evaluate the use of the pedostructure concept to determine the soil available water capacity, specifically the field capacity (FC). Pedostructure describes the soil aggregate structure and its thermodynamic interaction with water. Specifically, this work compared the calculation of soil water-holding properties based on the pedostructure concept with other standard methods for determining FC and permanent wilting point (PWP). The standard methods evaluated were the FAO texture estimate (FAO method), the Saxton-Rawls pedotransfer functions (PTFs method), and the water content at predefined soil suction (330 and 15,000 hPa) as measured with a pressure plate apparatus (PP method). Additionally, two pedostructure methods were assessed: the thermodynamic water retention curve (TWRC method) and the thermodynamic pedostructure (TPC method). Undisturbed loamy fine sand soil from a field in Millican, Texas, was analyzed at both the Ap and E horizons. The results showed that the estimated water content at FC and PWP for the three standard methods and for the TWRC method were in relative agreement. However, the TPC method used characteristic transition points in the modeled contents of different water pools in the soil aggregate and was higher for the Ap horizon, but in agreement with the other methods for the E horizon. For example, for the Ap horizon of the soil analyzed in this study, the FC estimated with the standard and TWRC methods ranged from 0.073 to 0.150 m3H2O m-3soil, while the TPC method estimate was 0.221 m3H2O m-3soil. Overall, the different methods showed good agreement in estimating the available water; however, the results also showed some variations in these estimates. It is clear that the TPC method has advantages over the other methods in considering the soil aggregate structure and modeling the soil water content within the aggregate structure. The thermodynamic nature of the TPC method enabled the use of both the soil shrinkage curve and the water retention curve in a weakly structured soil. It is expected that the TPC method would provide more comprehensive advances in understanding the soil water-holding properties of structured soils with higher clay contents. Keywords: Available water, Field capacity, Pedostructure, Pedotransfer functions, Permanent wilting point.


2007 ◽  
Vol 19 (4) ◽  
pp. 427-436 ◽  
Author(s):  
H.W. Hunt ◽  
A.M. Treonis ◽  
D.H. Wall ◽  
R.A. Virginia

AbstractEquations were developed to predict soil matric potential as a function of soil water content, texture and bulk density in sandy soils. The equations were based on the additivity hypothesis - that water-retention of a whole soil depends on the proportions of several particle size fractions, each with fixed water-retention characteristics. The new model is an advancement over previously published models in that it embodies three basic properties of water-retention curves: a) matric potential is zero at saturation water content, b) matric potential approaches -∞ as water content approaches zero, and c) volumetric water content in dry soil is proportional to bulk density. Values of model parameters were taken from the literature, or estimated by fitting model predictions to data for sandy soils with low organic matter content. Most of the variation in water-release curves in the calibration data was explained by texture, with negligible effects of bulk density and sand particle size. The model predicted that variation in clay content among soils within the sand and loamy sand textural classes had substantial effects on water-retention curves. An understanding of how variation in texture among sandy soils contributes to matric potential is necessary for interpreting biological activity in arid environments.


Sign in / Sign up

Export Citation Format

Share Document