scholarly journals How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35)

2021 ◽  
Vol 14 (12) ◽  
pp. 7775-7793
Author(s):  
Xueying Yu ◽  
Dylan B. Millet ◽  
Daven K. Henze

Abstract. We perform observing system simulation experiments (OSSEs) with the GEOS-Chem adjoint model to test how well methane emissions over North America can be resolved using measurements from the TROPOspheric Monitoring Instrument (TROPOMI) and similar high-resolution satellite sensors. We focus analysis on the impacts of (i) spatial errors in the prior emissions and (ii) model transport errors. Along with a standard scale factor (SF) optimization we conduct a set of inversions using alternative formalisms that aim to overcome limitations in the SF-based approach that arise for missing sources. We show that 4D-Var analysis of the TROPOMI data can improve monthly emission estimates at 25 km even with a spatially biased prior or model transport errors (42 %–93 % domain-wide bias reduction; R increases from 0.51 up to 0.73). However, when both errors are present, no single inversion framework can successfully improve both the overall bias and spatial distribution of fluxes relative to the prior on the 25 km model grid. In that case, the ensemble-mean optimized fluxes have a domain-wide bias of 77 Gg d−1 (comparable to that in the prior), with spurious source adjustments compensating for the transport errors. Increasing observational coverage through longer-timeframe inversions does not significantly change this picture. An inversion formalism that optimizes emission enhancements rather than scale factors exhibits the best performance for identifying missing sources, while an approach combining a uniform background emission with the prior inventory yields the best performance in terms of overall spatial fidelity – even in the presence of model transport errors. However, the standard SF optimization outperforms both of these for the magnitude of the domain-wide flux. For the common scenario in which prior errors are non-random, approximate posterior error reduction calculations (derived via gradient-based randomization) for the inversions reflect the sensitivity to observations but have no spatial correlation with the actual emission improvements. This demonstrates that such information content analysis can be used for general observing system characterization but does not describe the spatial accuracy of the posterior emissions or of the actual emission improvements. Findings here highlight the need for careful evaluation of potential missing sources in prior emission datasets and for robust accounting of model transport errors in inverse analyses of the methane budget.

2021 ◽  
Author(s):  
Xueying Yu ◽  
Dylan B. Millet ◽  
Daven K. Henze

Abstract. We perform Observation System Simulation Experiments (OSSEs) with the GEOS-Chem adjoint model to test how well methane emissions over North America can be resolved using measurements from the TROPOspheric Monitoring Instrument (TROPOMI) and similar high-resolution satellite sensors. We focus analysis on the impacts of i) spatial errors in the prior emissions, and ii) model transport errors. Along with a standard scale-factor (SF) optimization we conduct a set of inversions using alternative formalisms that aim to overcome limitations in the SF-based approach that arise for missing sources. We show that 4D-Var analysis of the TROPOMI data can improve monthly emission estimates at 25 km even with a spatially biased prior or model transport errors (42–93 % domain-wide bias reduction; R increases from 0.51 up to 0.73). However, when both errors are present, no single inversion framework can successfully improve both the overall bias and spatial distribution of fluxes relative to the prior on the 25 km model grid. In that case, the ensemble-mean optimized fluxes have a domain-wide bias of 77 Gg/d (comparable to that in the prior), with spurious source adjustments compensating for the transport errors. Increasing observational coverage through longer-timeframe inversions does not significantly change this picture. An inversion formalism that optimizes emission enhancements rather than scale factors exhibits the best performance for identifying missing sources, while an approach combining a uniform background emission with the prior inventory yields the best performance in terms of overall spatial fidelity—even in the presence of model transport errors. However, the standard SF optimization outperforms both of these for the magnitude of the domain-wide flux. For the common scenario in which prior errors are non-random, approximate posterior error reduction calculations for the inversions reflect the sensitivity to observations but have no spatial correlation with the actual emission improvements. This demonstrates that such information content analysis can be used for general observing system characterization but does not describe the spatial accuracy of the posterior emissions or of the actual emission improvements. Findings here highlight the need for careful evaluation of potential missing sources in prior emission datasets and for robust accounting of model transport errors in inverse analyses of the methane budget.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Kai Wu ◽  
Thomas Lauvaux ◽  
Kenneth J. Davis ◽  
Aijun Deng ◽  
Israel Lopez Coto ◽  
...  

The Indianapolis Flux Experiment aims to utilize a variety of atmospheric measurements and a high-resolution inversion system to estimate the temporal and spatial variation of anthropogenic greenhouse gas emissions from an urban environment. We present a Bayesian inversion system solving for fossil fuel and biogenic CO2 fluxes over the city of Indianapolis, IN. Both components were described at 1 km resolution to represent point sources and fine-scale structures such as highways in the a priori fluxes. With a series of Observing System Simulation Experiments, we evaluate the sensitivity of inverse flux estimates to various measurement deployment strategies and errors. We also test the impacts of flux error structures, biogenic CO2 fluxes and atmospheric transport errors on estimating fossil fuel CO2 emissions and their uncertainties. The results indicate that high-accuracy and high-precision measurements produce significant improvement in fossil fuel CO2 flux estimates. Systematic measurement errors of 1 ppm produce significantly biased inverse solutions, degrading the accuracy of retrieved emissions by about 1 µmol m–2 s–1 compared to the spatially averaged anthropogenic CO2 emissions of 5 µmol m–2 s–1. The presence of biogenic CO2 fluxes (similar magnitude to the anthropogenic fluxes) limits our ability to correct for random and systematic emission errors. However, assimilating continuous fossil fuel CO2 measurements with 1 ppm random error in addition to total CO2 measurements can partially compensate for the interference from biogenic CO2 fluxes. Moreover, systematic and random flux errors can be further reduced by reducing model-data mismatch errors caused by atmospheric transport uncertainty. Finally, the precision of the inverse flux estimate is highly sensitive to the correlation length scale in the prior emission errors. This work suggests that improved fossil fuel CO2 measurement technology, and better understanding of both prior flux and atmospheric transport errors are essential to improve the accuracy and precision of high-resolution urban CO2 flux estimates.


2018 ◽  
Vol 146 (1) ◽  
pp. 175-198 ◽  
Author(s):  
Rong Kong ◽  
Ming Xue ◽  
Chengsi Liu

Abstract A hybrid ensemble–3DVar (En3DVar) system is developed and compared with 3DVar, EnKF, “deterministic forecast” EnKF (DfEnKF), and pure En3DVar for assimilating radar data through perfect-model observing system simulation experiments (OSSEs). DfEnKF uses a deterministic forecast as the background and is therefore parallel to pure En3DVar. Different results are found between DfEnKF and pure En3DVar: 1) the serial versus global nature and 2) the variational minimization versus direct filter updating nature of the two algorithms are identified as the main causes for the differences. For 3DVar (EnKF/DfEnKF and En3DVar), optimal decorrelation scales (localization radii) for static (ensemble) background error covariances are obtained and used in hybrid En3DVar. The sensitivity of hybrid En3DVar to covariance weights and ensemble size is examined. On average, when ensemble size is 20 or larger, a 5%–10% static covariance gives the best results, while for smaller ensembles, more static covariance is beneficial. Using an ensemble size of 40, EnKF and DfEnKF perform similarly, and both are better than pure and hybrid En3DVar overall. Using 5% static error covariance, hybrid En3DVar outperforms pure En3DVar for most state variables but underperforms for hydrometeor variables, and the improvement (degradation) is most notable for water vapor mixing ratio qυ (snow mixing ratio qs). Overall, EnKF/DfEnKF performs the best, 3DVar performs the worst, and static covariance only helps slightly via hybrid En3DVar.


2015 ◽  
Vol 49 (6) ◽  
pp. 140-148 ◽  
Author(s):  
Robert Atlas ◽  
Lisa Bucci ◽  
Bachir Annane ◽  
Ross Hoffman ◽  
Shirley Murillo

AbstractObserving System Simulation Experiments (OSSEs) are an important tool for evaluating the potential impact of new or proposed observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. Extensive OSSEs have been conducted at the National Aeronautical and Space Administration (NASA) Goddard Space Flight Center (GSFC) and the National Oceanic and Atmospheric Administration (NOAA) Atlantic Oceanographic and Meteorological Laboratory (AOML) over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch; evaluated trade-offs in orbits, coverage, and accuracy for space-based wind lidars; and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. This paper summarizes early applications of global OSSEs to hurricane track forecasting and new experiments using both global and regional models. These latter experiments are aimed at assessing potential impact on hurricane track and intensity prediction over the oceans and at landfall.


Sign in / Sign up

Export Citation Format

Share Document