scholarly journals Joint inverse estimation of fossil fuel and biogenic CO2 fluxes in an urban environment: An observing system simulation experiment to assess the impact of multiple uncertainties

Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Kai Wu ◽  
Thomas Lauvaux ◽  
Kenneth J. Davis ◽  
Aijun Deng ◽  
Israel Lopez Coto ◽  
...  

The Indianapolis Flux Experiment aims to utilize a variety of atmospheric measurements and a high-resolution inversion system to estimate the temporal and spatial variation of anthropogenic greenhouse gas emissions from an urban environment. We present a Bayesian inversion system solving for fossil fuel and biogenic CO2 fluxes over the city of Indianapolis, IN. Both components were described at 1 km resolution to represent point sources and fine-scale structures such as highways in the a priori fluxes. With a series of Observing System Simulation Experiments, we evaluate the sensitivity of inverse flux estimates to various measurement deployment strategies and errors. We also test the impacts of flux error structures, biogenic CO2 fluxes and atmospheric transport errors on estimating fossil fuel CO2 emissions and their uncertainties. The results indicate that high-accuracy and high-precision measurements produce significant improvement in fossil fuel CO2 flux estimates. Systematic measurement errors of 1 ppm produce significantly biased inverse solutions, degrading the accuracy of retrieved emissions by about 1 µmol m–2 s–1 compared to the spatially averaged anthropogenic CO2 emissions of 5 µmol m–2 s–1. The presence of biogenic CO2 fluxes (similar magnitude to the anthropogenic fluxes) limits our ability to correct for random and systematic emission errors. However, assimilating continuous fossil fuel CO2 measurements with 1 ppm random error in addition to total CO2 measurements can partially compensate for the interference from biogenic CO2 fluxes. Moreover, systematic and random flux errors can be further reduced by reducing model-data mismatch errors caused by atmospheric transport uncertainty. Finally, the precision of the inverse flux estimate is highly sensitive to the correlation length scale in the prior emission errors. This work suggests that improved fossil fuel CO2 measurement technology, and better understanding of both prior flux and atmospheric transport errors are essential to improve the accuracy and precision of high-resolution urban CO2 flux estimates.

2014 ◽  
Vol 7 (6) ◽  
pp. 2867-2874 ◽  
Author(s):  
X. Zhang ◽  
K. R. Gurney ◽  
P. Rayner ◽  
Y. Liu ◽  
S. Asefi-Najafabady

Abstract. Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential "dynamical inconsistency" by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 TgC grid cell−1 yr−1 (−3.39 kgC m−2 yr−1) to +30.0 TgC grid cell−1 yr−1 (+2.6 kgC m−2 yr−1) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.


2014 ◽  
Vol 7 (3) ◽  
pp. 3575-3593
Author(s):  
X. Zhang ◽  
K. R. Gurney ◽  
P. Rayner ◽  
Y. Liu ◽  
S. Asefi-Najafabady

Abstract. Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Finite grid resolution can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. We test these mismatches by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are: (1) a commonly-used method that allocates emissions to gridcells with no attempt to ensure dynamical consistency with atmospheric transport; (2) an improved method that reallocates emissions to gridcells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 Tg C gridcell−1 yr−1 (−3.39 kg C m−2 yr−1) to +30.0 Tg C gridcell−1 yr−1 (+2.6 kg C m−2 yr−1) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.


2014 ◽  
Vol 14 (16) ◽  
pp. 23681-23709
Author(s):  
S. M. Miller ◽  
I. Fung ◽  
J. Liu ◽  
M. N. Hayek ◽  
A. E. Andrews

Abstract. Estimates of CO2 fluxes that are based on atmospheric data rely upon a meteorological model to simulate atmospheric CO2 transport. These models provide a quantitative link between surface fluxes of CO2 and atmospheric measurements taken downwind. Therefore, any errors in the meteorological model can propagate into atmospheric CO2 transport and ultimately bias the estimated CO2 fluxes. These errors, however, have traditionally been difficult to characterize. To examine the effects of CO2 transport errors on estimated CO2 fluxes, we use a global meteorological model-data assimilation system known as "CAM–LETKF" to quantify two aspects of the transport errors: error variances (standard deviations) and temporal error correlations. Furthermore, we develop two case studies. In the first case study, we examine the extent to which CO2 transport uncertainties can bias CO2 flux estimates. In particular, we use a common flux estimate known as CarbonTracker to discover the minimum hypothetical bias that can be detected above the CO2 transport uncertainties. In the second case study, we then investigate which meteorological conditions may contribute to month-long biases in modeled atmospheric transport. We estimate 6 hourly CO2 transport uncertainties in the model surface layer that range from 0.15 to 9.6 ppm (standard deviation), depending on location, and we estimate an average error decorrelation time of ∼2.3 days at existing CO2 observation sites. As a consequence of these uncertainties, we find that CarbonTracker CO2 fluxes would need to be biased by at least 29%, on average, before that bias were detectable at existing non-marine atmospheric CO2 observation sites. Furthermore, we find that persistent, bias-type errors in atmospheric transport are associated with consistent low net radiation, low energy boundary layer conditions. The meteorological model is not necessarily more uncertain in these conditions. Rather, the extent to which meteorological uncertainties manifest as persistent atmospheric transport biases appears to depend, at least in part, on the energy and stability of the boundary layer. Existing CO2 flux studies may be more likely to estimate inaccurate regional fluxes under those conditions.


2016 ◽  
Author(s):  
Dhanyalekshmi Pillai ◽  
Michael Buchwitz ◽  
Christoph Gerbig ◽  
Thomas Koch ◽  
Maximilian Reuter ◽  
...  

Abstract. Currently 52 % of the world's population resides in urban areas and as a consequence, approximately 70 % of fossil fuel emissions of CO2 arise from cities. This fact in combination with large uncertainties associated with quantifying urban emissions due to lack of appropriate measurements makes it crucial to obtain new measurements useful to identify and quantify urban emissions. This is required, for example, for the assessment of emission mitigation strategies and their effectiveness. Here we investigate the potential of a satellite mission like Carbon Monitoring Satellite (CarbonSat), proposed to the European Space Agency (ESA) – to retrieve the city emissions globally, taking into account a realistic description of the expected retrieval errors, the spatiotemporal distribution of CO2 fluxes, and atmospheric transport. To achieve this we use (i) a high-resolution modeling framework consisting of the Weather Research Forecasting model with a greenhouse gas module (WRF-GHG), which is used to simulate the atmospheric observations of column averaged CO2 dry air mole fractions (XCO2), and (ii) a Bayesian inversion method to derive anthropogenic CO2 emissions and their errors from the CarbonSat XCO2 observations. We focus our analysis on Berlin in Germany using CarbonSat's cloud-free overpasses for one reference year. The dense (wide swath) CarbonSat simulated observations with high-spatial resolution (approx. 2 km × 2 km) permits one to map the city CO2 emission plume with a peak enhancement of typically 0.8–1.35 ppm relative to the background. By performing a Bayesian inversion, it is shown that the random error (RE) of the retrieved Berlin CO2 emission for a single overpass is typically less than 8 to 10 MtCO2 yr−1 (about 15 to 20 % of the total city emission). The range of systematic errors (SE) of the retrieved fluxes due to various sources of error (measurement, modeling, and inventories) is also quantified. Depending on the assumptions made, the SE is less than about 6 to 10 MtCO2 yr−1 for most cases. We find that in particular systematic modeling-related errors can be quite high during the summer months due to substantial XCO2 variations caused by biogenic CO2 fluxes at and around the target region. When making the extreme worst-case assumption that biospheric XCO2 variations cannot be modeled at all (which is overly pessimistic), the SE of the retrieved emission is found to be larger than 10 MtCO2 yr−1 for about half of the sufficiently cloud-free overpasses, and for some of the overpasses we found that SE may even be on the order of magnitude of the anthropogenic emission. This indicates that biogenic XCO2 variations cannot be neglected but must be considered during forward and/or inverse modeling. Overall, we conclude that CarbonSat is well suited to obtain city-scale CO2 emissions as needed to enhance our current understanding of anthropogenic carbon fluxes and that CarbonSat or CarbonSat-like satellites should be an important component of a future global carbon emission monitoring system.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6009
Author(s):  
YoungSeok Hwang ◽  
Jung-Sup Um ◽  
JunHwa Hwang ◽  
Stephan Schlüter

The Kaya identity is a powerful index displaying the influence of individual carbon dioxide (CO2) sources on CO2 emissions. The sources are disaggregated into representative factors such as population, gross domestic product (GDP) per capita, energy intensity of the GDP, and carbon footprint of energy. However, the Kaya identity has limitations as it is merely an accounting equation and does not allow for an examination of the hidden causalities among the factors. Analyzing the causal relationships between the individual Kaya identity factors and their respective subcomponents is necessary to identify the real and relevant drivers of CO2 emissions. In this study we evaluated these causal relationships by conducting a parallel multiple mediation analysis, whereby we used the fossil fuel CO2 flux based on the Open-Source Data Inventory of Anthropogenic CO2 emissions (ODIAC). We found out that the indirect effects from the decomposed variables on the CO2 flux are significant. However, the Kaya identity factors show neither strong nor even significant mediating effects. This demonstrates that the influence individual Kaya identity factors have on CO2 directly emitted to the atmosphere is not primarily due to changes in their input factors, namely the decomposed variables.


2007 ◽  
Vol 7 (13) ◽  
pp. 3461-3479 ◽  
Author(s):  
C. Geels ◽  
M. Gloor ◽  
P. Ciais ◽  
P. Bousquet ◽  
P. Peylin ◽  
...  

Abstract. The CO2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatiotemporal coverage of CO2 observations and biases of the models. In order to assess the biases related to the use of different models the CO2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO2 observations from continental, coastal and mountain sites as well as flasks sampled on aircrafts are used to evaluate the models' ability to capture the spatiotemporal variability and distribution of lower troposphere CO2 across Europe. 14CO2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to ~10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation – data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are generally underpredicted. This is a reflection of the different mixing regimes during day and night combined with different vertical resolution between models. In line with this finding, the agreement among models is increased when sampling in the afternoon hours only and when sampling the mixed portion of the PBL, which amounts to sampling at a few hundred meters above ground. The main recommendations resulting from the study for constraining land carbon sources and sinks using high-resolution concentration data and state-of-the art transport models through inverse methods are given in the following: 1) Low altitude stations are presently preferable in inverse studies. If high altitude stations are used then the model level that represents the specific sites should be applied, 2) at low altitude sites only the afternoon values of concentrations can be represented sufficiently well by current models and therefore afternoon values are more appropriate for constraining large-scale sources and sinks in combination with transport models, 3) even when using only afternoon values it is clear that data sampled several hundred meters above ground can be represented substantially more robustly in models than surface station records, which emphasize the use of tower data in inverse studies and finally 4) traditional large scale transport models seem not sufficient to resolve fine-scale features associated with fossil fuel emissions, as well as larger-scale features like the concentration distribution above the south-western Europe. It is therefore recommended to use higher resolution models for interpretation of continental data in future studies.


2017 ◽  
Author(s):  
Yu Liu ◽  
Nicolas Gruber ◽  
Dominik Brunner

Abstract. The emission of CO2 from the burning of fossil fuel is a prime determinant of variations in atmospheric CO2. Here, we simulate this fossil fuel signal together with the natural and background components with a regional high-resolution atmospheric transport model for central and southern Europe considering separately the emissions from different sectors and countries on the basis of emission inventories and hourly emission time functions. The simulated variations in atmospheric CO2 agree very well with observation-based estimates, although the observed variance is slightly underestimated, particularly for the fossil fuel component. Despite relatively rapid atmospheric mixing, the simulated fossil fuel signal reveals distinct annual mean structures deep into the troposphere reflecting the spatially dense aggregation of most emissions. The fossil fuel signal accounts for more than half of the total (fossil fuel + biospheric + background) temporal variations in atmospheric CO2 in most areas of northern and western central Europe, with the largest variations occurring on diurnal timescales owing to the combination of diurnal variations in emissions and atmospheric mixing/transport out of the surface layer. Their co-variance leads to a fossil-fuel diurnal rectifier effect with a magnitude as large as 9 ppm compared to a case with time-constant emissions. The spatial pattern of CO2 from the different sectors largely reflects the distribution and relative magnitude of the corresponding emissions, with power plant emissions leaving the most distinguished mark. An exception is southern and western Europe, where the emissions from the transportation sector dominate the fossil fuel signal. Most of the fossil fuel CO2 remains within the country responsible for the emission, although in smaller countries, up to 80 % of the fossil fuel signal can come from abroad. A fossil fuel emission reduction of 30 % is clearly detectable for a surface-based observing system for atmospheric CO2, while it is beyond the edge of detectability for the current generation of satellites with the exception of a few hotspot sites. Changes in variability in atmospheric CO2 might open an additional door for the monitoring and verification of changes in fossil fuel emissions, primarily for surface based systems.


2016 ◽  
Vol 16 (4) ◽  
pp. 1907-1918 ◽  
Author(s):  
Xia Zhang ◽  
Kevin R. Gurney ◽  
Peter Rayner ◽  
David Baker ◽  
Yu-ping Liu

Abstract. Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from −1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.


2016 ◽  
Vol 19 (3) ◽  
pp. 1013-1039 ◽  
Author(s):  
Risa Patarasuk ◽  
Kevin Robert Gurney ◽  
Darragh O’Keeffe ◽  
Yang Song ◽  
Jianhua Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document