scholarly journals Land surface model photosynthesis and parameter calibration for boreal sites with adaptive population importance sampler

2019 ◽  
Author(s):  
Jarmo Mäkelä ◽  
Jürgen Knauer ◽  
Mika Aurela ◽  
Andrew Black ◽  
Martin Heimann ◽  
...  

Abstract. We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the Boreal zone. The parameter posterior distributions were generated by adaptive population importance sampler and the optimal values by a simple stochastic optimisation algorithm. The observations used to constrain the model are evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation. We were able to improve the coefficient of determination and the model bias with all stomatal conductance formulations. There was no clear candidate for the best stomatal conductance model, although certain versions produced better estimates depending on the examined variable (ET, GPP) and the used metric. We were also able to significantly enhance the model behaviour during a drought event in a Finnish Scots pine forest site. The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity. This modification enabled the model to correctly time and replicate the springtime increase in GPP (and ET) for conifers throughout the measurements sites used in this study.

2019 ◽  
Vol 12 (9) ◽  
pp. 4075-4098 ◽  
Author(s):  
Jarmo Mäkelä ◽  
Jürgen Knauer ◽  
Mika Aurela ◽  
Andrew Black ◽  
Martin Heimann ◽  
...  

Abstract. We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the boreal zone. The parameter posterior distributions were generated by the adaptive population importance sampler (APIS); then the optimal values were estimated by a simple stochastic optimisation algorithm. The model was constrained with in situ observations of evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation. The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This modification enabled the model to correctly reproduce the springtime increase in GPP for all conifer sites used in this study. Overall, the calibration and model modifications improved the coefficient of determination and the model bias for GPP with all stomatal conductance formulations. However, only the coefficient of determination was clearly improved for ET. The optimisation resulted in best performance by the Bethy, Ball–Berry, and the Friend and Kiang stomatal conductance models. We also optimised the model during a drought event at a Finnish Scots pine forest site. This optimisation improved the model behaviour but resulted in significant changes to the parameter values except for the unified stomatal optimisation model (USO). Interestingly, the USO demonstrated the best performance during this event.


2017 ◽  
Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Delphine Jennifer Leroux ◽  
Hélène Dewaele ◽  
David Fairbairn ◽  
...  

Abstract. In this study, a global Land Data Assimilation system (LDAS-Monde) is tested over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface Soil Moisture (SM) and Leaf Area Index (LAI) observations to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. Surface SM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow-dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 cm to 100 cm depth). A sensitivity test of the Jacobians over 2000–2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and surface SM have an impact on the different control variables. From the assimilation of surface SM, the LDAS is more effective in modifying soil-moisture from the top layers of soil as model sensitivity to surface SM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 cm to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Assimilation impact shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. The assimilation impact's evaluation is successfully carried out using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observations based estimates of up-scaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.


2014 ◽  
Vol 7 (6) ◽  
pp. 8649-8701 ◽  
Author(s):  
J. Ryder ◽  
J. Polcher ◽  
P. Peylin ◽  
C. Ottlé ◽  
Y. Chen ◽  
...  

Abstract. In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has long been based on a "big-leaf approach", with averaging schemes that represent in-canopy processes. Such models have difficulties in reproducing consistently the energy balance in field observations. We here outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems – CANopy). This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multilayer longwave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare soil flux within the canopy space. Significantly, it avoids iterations over the height of tha canopy and so maintains implicit coupling to the atmospheric model LMDz. As a first test, the model is evaluated against data from both an intensive measurement campaign and longer term eddy covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of fluxes, as well as the gradients of sensible heat fluxes. However, the model overestimates sensible heat flux against an underestimate of the radiation budget. Improved performance is expected through the implementation of a more detailed calculation of stand albedo and a more up-to-date stomatal conductance calculation.


2019 ◽  
Vol 11 (6) ◽  
pp. 735 ◽  
Author(s):  
Moustapha Tall ◽  
Clément Albergel ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Françoise Guichard ◽  
...  

This study focuses on the ability of the global Land Data Assimilation System, LDAS-Monde, to improve the representation of land surface variables (LSVs) over Burkina-Faso through the joint assimilation of satellite derived surface soil moisture (SSM) and leaf area index (LAI) from January 2001 to June 2018. The LDAS-Monde offline system is forced by the latest European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis ERA5 as well as ERA-Interim former reanalysis, leading to reanalyses of LSVs at 0.25° × 0.25° and 0.50° × 0.50° spatial resolution, respectively. Within LDAS-Monde, SSM and LAI observations from the Copernicus Global Land Service (CGLS) are assimilated with a simplified extended Kalman filter (SEKF) using the CO2-responsive version of the ISBA (Interactions between Soil, Biosphere, and Atmosphere) land surface model (LSM). First, it is shown that ERA5 better represents precipitation and incoming solar radiation than ERA-Interim former reanalysis from ECMWF based on in situ data. Results of four experiments are then compared: Open-loop simulation (i.e., no assimilation) and analysis (i.e., joint assimilation of SSM and LAI) forced by either ERA5 or ERA-Interim. After jointly assimilating SSM and LAI, it is noticed that the assimilation is able to impact soil moisture in the first top soil layers (the first 20 cm), and also in deeper soil layers (from 20 cm to 60 cm and below), as reflected by the structure of the SEKF Jacobians. The added value of using ERA5 reanalysis over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is able to improve the simulation of both SSM and LAI: The analyses add skill to both configurations, indicating the healthy behavior of LDAS-Monde. For LAI in particular, the southern region of the domain (dominated by a Sudan-Guinean climate) highlights a strong impact of the assimilation compared to the other two sub-regions of Burkina-Faso (dominated by Sahelian and Sudan-Sahelian climates). In the southern part of the domain, differences between the model and the observations are the largest, prior to any assimilation. These differences are linked to the model failing to represent the behavior of some specific vegetation species, which are known to put on leaves before the first rains of the season. The LDAS-Monde analysis is very efficient at compensating for this model weakness. Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model (GLEAM) project as well as upscaled carbon uptake from the FLUXCOM project and sun-induced fluorescence from the Global Ozone Monitoring Experiment-2 (GOME-2) are used in the evaluation process, again demonstrating improvements in the representation of evapotranspiration and gross primary production after assimilation.


2017 ◽  
Vol 14 (7) ◽  
pp. 1969-1987 ◽  
Author(s):  
Tea Thum ◽  
Sönke Zaehle ◽  
Philipp Köhler ◽  
Tuula Aalto ◽  
Mika Aurela ◽  
...  

Abstract. Recent satellite observations of sun-induced chlorophyll fluorescence (SIF) are thought to provide a large-scale proxy for gross primary production (GPP), thus providing a new way to assess the performance of land surface models (LSMs). In this study, we assessed how well SIF is able to predict GPP in the Fenno-Scandinavian region and what potential limitations for its application exist. We implemented a SIF model into the JSBACH LSM and used active leaf-level chlorophyll fluorescence measurements (Chl F) to evaluate the performance of the SIF module at a coniferous forest at Hyytiälä, Finland. We also compared simulated GPP and SIF at four Finnish micrometeorological flux measurement sites to observed GPP as well as to satellite-observed SIF. Finally, we conducted a regional model simulation for the Fenno-Scandinavian region with JSBACH and compared the results to SIF retrievals from the GOME-2 (Global Ozone Monitoring Experiment-2) space-borne spectrometer and to observation-based regional GPP estimates. Both observations and simulations revealed that SIF can be used to estimate GPP at both site and regional scales. At regional scale the model was able to simulate observed SIF averaged over 5 years with r2 of 0.86. The GOME-2-based SIF was a better proxy for GPP than the remotely sensed fAPAR (fraction of absorbed photosynthetic active radiation by vegetation). The observed SIF captured the seasonality of the photosynthesis at site scale and showed feasibility for use in improving of model seasonality at site and regional scale.


2016 ◽  
Vol 9 (8) ◽  
pp. 2833-2852 ◽  
Author(s):  
Nina M. Raoult ◽  
Tim E. Jupp ◽  
Peter M. Cox ◽  
Catherine M. Luke

Abstract. Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.


2016 ◽  
Vol 17 (3) ◽  
pp. 725-744 ◽  
Author(s):  
Kurt C. Solander ◽  
John T. Reager ◽  
Brian F. Thomas ◽  
Cédric H. David ◽  
James S. Famiglietti

Abstract The widespread influence of reservoirs on global rivers makes representations of reservoir outflow and storage essential components of large-scale hydrology and climate simulations across the land surface and atmosphere. Yet, reservoirs have yet to be commonly integrated into earth system models. This deficiency influences model processes such as evaporation and runoff, which are critical for accurate simulations of the coupled climate system. This study describes the development of a generalized reservoir model capable of reproducing realistic reservoir behavior for future integration in a global land surface model (LSM). Equations of increasing complexity relating reservoir inflow, outflow, and storage were tested for 14 California reservoirs that span a range of spatial and climate regimes. Temperature was employed in model equations to modulate seasonal changes in reservoir management behavior and to allow for the evolution of management seasonality as future climate varies. Optimized parameter values for the best-performing model were generalized based on the ratio of winter inflow to storage capacity so a future LSM user can generate reservoirs in any grid location by specifying the given storage capacity. Model performance statistics show good agreement between observed and simulated reservoir storage and outflow for both calibration (mean normalized RMSE = 0.48; mean coefficient of determination = 0.53) and validation reservoirs (mean normalized RMSE = 0.15; mean coefficient of determination = 0.67). The low complexity of model equations that include climate-adaptive operation features combined with robust model performance show promise for simulations of reservoir impacts on hydrology and climate within an LSM.


2016 ◽  
Author(s):  
Nina M. Raoult ◽  
Tim E. Jupp ◽  
Peter M. Cox ◽  
Catherine M. Luke

Abstract. Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. This paper describes adJULES and demonstrates its ability to improve the model-data fit using eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90 % of the sites used in the study, a third of which give similar reduction in errors as site specific optimisations. The new improved parameter set for JULES is presented along with the associated uncertainties for each parameter.


2015 ◽  
Vol 8 (12) ◽  
pp. 10339-10363 ◽  
Author(s):  
D. L. Lombardozzi ◽  
M. J. B. Zeppel ◽  
R. A. Fisher ◽  
A. Tawfik

Abstract. The terrestrial biosphere regulates climate through carbon, water, and energy exchanges with the atmosphere. Land surface models estimate plant transpiration, which is actively regulated by stomatal pores, and provide projections essential for understanding Earth's carbon and water resources. Empirical evidence from 204 species suggests that significant amounts of water are lost through leaves at night, though land surface models typically reduce stomatal conductance to nearly zero at night. Here, we apply observed nighttime stomatal conductance values to a global land surface model, to better constrain carbon and water budgets. We find that our modifications increase transpiration up to 5 % globally, reduce modeled available soil moisture by up to 50 % in semi-arid regions, and increase the importance of the land surface on modulating energy fluxes. Carbon gain declines up to ~ 4 % globally and > 25 % in semi-arid regions. We advocate for realistic constraints of minimum stomatal conductance in future climate simulations, and widespread field observations to improve parameterizations.


2021 ◽  
Author(s):  
Anthony Mucia ◽  
Bertrand Bonan ◽  
Clément Albergel ◽  
Yongjun Zheng ◽  
Jean-Christophe Calvet

Abstract. The land data assimilation system, LDAS-Monde, developed by the Research Department of the French Meteorological service (Centre National de Recherches Météorologiques – CNRM) is capable of well representing Land Surface Variables (LSVs) from regional to global scales. It jointly assimilates satellite-derived observations of leaf area index (LAI) and surface soil moisture (SSM) into the Interactions between Soil Biosphere and Atmosphere (ISBA) land surface model (LSM), increasing the accuracy of the model simulations and forecasts of the LSVs. The assimilation of vegetation variables directly impacts RZSM through seven control variables consisting in soil moisture of seven soil layers from the soil surface to 1 m depth. This capability is particularly useful in dry conditions, where SSM and RZSM are decoupled to a large extent. However, this positive impact does not reach its full potential due to the low temporal availability of optical-based LAI observations, at best, every ten days, and can suffer from months of no data over regions and seasons with heavy cloud cover such as winter or monsoon conditions. In that context, this study investigates the assimilation of low frequency passive microwave vegetation optical depth (VOD), available in almost all weather conditions, as a proxy of LAI. The Vegetation Optical Depth Climate Archive (VODCA) dataset provides near-daily observations of vegetation conditions, far more frequently than optical based product such as LAI. This study's goal is to convert the more frequent X-band VOD observations into proxy-LAI observations through linear re-scaling and to assimilate them in place of direct LAI observations. Seven assimilation experiments were run from 2003 to 2018 over the contiguous United States (CONUS), with 1) no assimilation, the assimilation of 2) SSM, 3) LAI, 4) re-scaled VODX, 5) re-scaled VODX only when LAI observations available, 6) LAI + SSM, and 7) re-scaled VODX + SSM. This study analyzes these assimilation experiments by comparing to satellite derived observations and in situ measurements and is focused on the variables of LAI, SSM, gross primary production (GPP), and evapotranspiration (ET). Each experiment is driven by atmospheric forcing reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5. Results showed improved representation of GPP and ET by assimilating re-scaled VOD in place of LAI. Additionally, the joint assimilation of vegetation related variables (i.e. LAI or re-scaled VOD) and SSM demonstrates a small improvement in the representation of soil moisture over the assimilation of any dataset by itself.


Sign in / Sign up

Export Citation Format

Share Document