scholarly journals WAVETRISK-1.0: an adaptive wavelet hydrostatic dynamical core

2019 ◽  
Author(s):  
Nicholas K.-R. Kevlahan ◽  
Thomas Dubos

Abstract. This paper presents the new adaptive dynamical core wavetrisk. The fundamental features of the wavelet-based adaptivity were developed for the shallow water equation on the β-plane in Dubos and Kevlahan (2013) and extended to the icosahedral grid on the sphere in Aechtner et al. (2015). The three-dimensional dynamical core solves the compressible hydrostatic multilayer rotating shallow water equations on a multiscale dynamically adapted grid. The equations are discretized using a Lagrangian vertical coordinate version of dynamico introduced in Dubos et al. (2015). The horizontal computational grid is adapted at each time step to ensure a user-specified relative error in either the tendencies or the solution. The Lagrangian vertical grid is remapped using an adaptive Lagrangian-Eulerian (ALE) algorithm onto the initial hybrid σ pressure-based coordinates as necessary. The resulting grid is adapted horizontally, but uniform over all vertical layers. Thus, the three-dimensional grid is a set of columns of varying sizes. The code is parallelized by domain decomposition using mpi and the variables are stored in a hybrid data structure of dyadic quad trees and patches. A low storage explicit fourth order Runge-Kutta scheme is used for time integration. Validation results are presented for three standard dynamical core test cases: mountain-induced Rossby wave train, baroclinic instability of a jet stream and the Held and Suarez simplified general circulation model. The results confirm good strong parallel scaling and demonstrate that wavetrisk can achieve grid compression ratios of several hundred times compared with an equivalent static grid model.

2019 ◽  
Vol 12 (11) ◽  
pp. 4901-4921
Author(s):  
Nicholas K.-R. Kevlahan ◽  
Thomas Dubos

Abstract. This paper presents the new adaptive dynamical core wavetrisk. The fundamental features of the wavelet-based adaptivity were developed for the shallow water equation on the β plane and extended to the icosahedral grid on the sphere in previous work by the authors. The three-dimensional dynamical core solves the compressible hydrostatic multilayer rotating shallow water equations on a multiscale dynamically adapted grid. The equations are discretized using a Lagrangian vertical coordinate version of the dynamico model. The horizontal computational grid is adapted at each time step to ensure a user-specified relative error in either the tendencies or the solution. The Lagrangian vertical grid is remapped using an arbitrary Lagrangian–Eulerian (ALE) algorithm onto the initial hybrid σ-pressure-based coordinates as necessary. The resulting grid is adapted horizontally but uniform over all vertical layers. Thus, the three-dimensional grid is a set of columns of varying sizes. The code is parallelized by domain decomposition using mpi, and the variables are stored in a hybrid data structure of dyadic quad trees and patches. A low-storage explicit fourth-order Runge–Kutta scheme is used for time integration. Validation results are presented for three standard dynamical core test cases: mountain-induced Rossby wave train, baroclinic instability of a jet stream and the Held and Suarez simplified general circulation model. The results confirm good strong parallel scaling and demonstrate that wavetrisk can achieve grid compression ratios of several hundred times compared with an equivalent static grid model.


Author(s):  
Dmitry V. Kulyamin ◽  
Valentin P. Dymnikov

AbstractThe paper presents a new version of the three-dimensional model of general circulation of Earth troposphere-stratosphere-mesosphere (for altitudes up to 90 km from the surface) with a hybrid vertical coordinate. A method of vertical discretization is developed according to the numerical algorithms and preserving the equivalence of algorithms used in previous models. An algorithm of semi-implicit integration in time is proposed. The new version of the model adequately represents climatic characteristics,which are confirmed by comparison of the results of numerical experiments with observation data and with the previous version of the atmospheric circulation model using sigma-coordinates.


Author(s):  
Christiane Jablonowski ◽  
Robert C. Oehmke ◽  
Quentin F. Stout

Adaptive mesh refinement techniques offer a flexible framework for future variable-resolution climate and weather models since they can focus their computational mesh on certain geographical areas or atmospheric events. Adaptive meshes can also be used to coarsen a latitude–longitude grid in polar regions. This allows for the so-called reduced grid setups. A spherical, block-structured adaptive grid technique is applied to the Lin–Rood finite-volume dynamical core for weather and climate research. This hydrostatic dynamics package is based on a conservative and monotonic finite-volume discretization in flux form with vertically floating Lagrangian layers. The adaptive dynamical core is built upon a flexible latitude–longitude computational grid and tested in two- and three-dimensional model configurations. The discussion is focused on static mesh adaptations and reduced grids. The two-dimensional shallow water setup serves as an ideal testbed and allows the use of shallow water test cases like the advection of a cosine bell, moving vortices, a steady-state flow, the Rossby–Haurwitz wave or cross-polar flows. It is shown that reduced grid configurations are viable candidates for pure advection applications but should be used moderately in nonlinear simulations. In addition, static grid adaptations can be successfully used to resolve three-dimensional baroclinic waves in the storm-track region.


2010 ◽  
Vol 138 (10) ◽  
pp. 3988-4005 ◽  
Author(s):  
Yuya Baba ◽  
Keiko Takahashi ◽  
Takeshi Sugimura ◽  
Koji Goto

Abstract The three-dimensional dynamical core of an atmospheric general circulation model employing Yin–Yang grid is developed and examined. Benchmark test cases based on the shallow-water model configuration are first performed to examine the validity of two-dimensional calculations. The experiments show that the model simulates reasonable flow fields with second-order accuracy. The model validation is then extended to three-dimensional features where the capability of the dynamical core on the Yin–Yang grid has not been tested before: the global mountain gravity wave, long-term integration, and life cycle experiments. The simulated flow fields are in good agreement with the results of original experiments in all three experiments. The sensitivity of the model flow field to the overset region is also tested. The experiments reveal that the presence of the overset region does not significantly affect the dynamics on both long and short time scales, if the number of overset grids is fixed to three and the high-order interpolation method is applied for data interpolation between the Yin–Yang grids.


2010 ◽  
Vol 67 (6) ◽  
pp. 1983-1995 ◽  
Author(s):  
Steven C. Hardiman ◽  
David G. Andrews ◽  
Andy A. White ◽  
Neal Butchart ◽  
Ian Edmond

Abstract Transformed Eulerian mean (TEM) equations and Eliassen–Palm (EP) flux diagnostics are presented for the general nonhydrostatic, fully compressible, deep atmosphere formulation of the primitive equations in spherical geometric coordinates. The TEM equations are applied to a general circulation model (GCM) based on these general primitive equations. It is demonstrated that a naive application in this model of the widely used approximations to the EP diagnostics, valid for the hydrostatic primitive equations using log-pressure as a vertical coordinate and presented, for example, by Andrews et al. in 1987 can lead to misleading features in these diagnostics. These features can be of the same order of magnitude as the diagnostics themselves throughout the winter stratosphere. Similar conclusions are found to hold for “downward control” calculations. The reasons are traced to the change of vertical coordinate from geometric height to log-pressure. Implications for the modeling community, including comparison of model output with that from reanalysis products available only on pressure surfaces, are discussed.


Ocean Science ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 61-71 ◽  
Author(s):  
J. Chiggiato ◽  
P. Oddo

Abstract. In the framework of the Mediterranean Forecasting System (MFS) project, the performance of regional numerical ocean forecasting systems is assessed by means of model-model and model-data comparison. Three different operational systems considered in this study are: the Adriatic REGional Model (AREG); the Adriatic Regional Ocean Modelling System (AdriaROMS) and the Mediterranean Forecasting System General Circulation Model (MFS-GCM). AREG and AdriaROMS are regional implementations (with some dedicated variations) of POM and ROMS, respectively, while MFS-GCM is an OPA based system. The assessment is done through standard scores. In situ and remote sensing data are used to evaluate the system performance. In particular, a set of CTD measurements collected in the whole western Adriatic during January 2006 and one year of satellite derived sea surface temperature measurements (SST) allow to asses a full three-dimensional picture of the operational forecasting systems quality during January 2006 and to draw some preliminary considerations on the temporal fluctuation of scores estimated on surface quantities between summer 2005 and summer 2006. The regional systems share a negative bias in simulated temperature and salinity. Nonetheless, they outperform the MFS-GCM in the shallowest locations. Results on amplitude and phase errors are improved in areas shallower than 50 m, while degraded in deeper locations, where major models deficiencies are related to vertical mixing overestimation. In a basin-wide overview, the two regional models show differences in the local displacement of errors. In addition, in locations where the regional models are mutually correlated, the aggregated mean squared error was found to be smaller, that is a useful outcome of having several operational systems in the same region.


2021 ◽  
Author(s):  
Nicholas Keville-Reynolds Kevlahan ◽  
Florian Lemarié

Abstract. This paper introduces WAVETRISK-2.1 (i.e. WAVETRISK-OCEAN), an incompressible version of the atmosphere model wavetrisk-1.x with free-surface. This new model is built on the same wavelet-based dynamically adaptive core as wavetrisk, which itself uses DYNANICO's mimetic vector-invariant multilayer rotating shallow water formulation. Both codes use a Lagrangian vertical coordinate with conservative remapping. The ocean variant solves the incompressible multilayer shallow water equations with inhomogeneous density layers. Time integration uses barotropic--baroclinic mode splitting via an semi-implicit free surface formulation, which is about 34–44 times faster than an unsplit explicit time-stepping. The barotropic and baroclinic estimates of the free surface are reconciled at each time step using layer dilation. No slip boundary conditions at coastlines are approximated using volume penalization. The vertical eddy viscosity and diffusivity coefficients are computed from a closure model based on turbulent kinetic energy (TKE). Results are presented for a standard set of ocean model test cases adapted to the sphere (seamount, upwelling and baroclinic turbulence). An innovative feature of wavetrisk-ocean is that it could be coupled easily to the wavetrisk atmosphere model, thus providing a first building block toward an integrated Earth-system model using a consistent modelling framework with dynamic mesh adaptivity and mimetic properties.


2014 ◽  
Vol 7 (5) ◽  
pp. 2181-2191 ◽  
Author(s):  
D. Rossi ◽  
A. Maurizi

Abstract. The development and validation of the vertical diffusion module of IL-GLOBO, a Lagrangian transport model coupled online with the Eulerian general circulation model GLOBO, is described. The module simulates the effects of turbulence on particle motion by means of a Lagrangian stochastic model (LSM) consistently with the turbulent diffusion equation used in GLOBO. The implemented LSM integrates particle trajectories, using the native σ-hybrid coordinates of the Eulerian component, and fulfils the well-mixed condition (WMC) in the general case of a variable density profile. The module is validated through a series of 1-D offline numerical experiments by assessing its accuracy in maintaining an initially well-mixed distribution in the vertical. A dynamical time-step selection algorithm with constraints related to the shape of the diffusion coefficient profile is developed and discussed. Finally, the skills of a linear interpolation and a modified Akima spline interpolation method are compared, showing that both satisfy the WMC with significant differences in computational time. A preliminary run of the fully integrated 3-D model confirms the result only for the Akima interpolation scheme while the linear interpolation does not satisfy the WMC with a reasonable choice of the minimum integration time step.


Sign in / Sign up

Export Citation Format

Share Document