scholarly journals Operational ocean models in the Adriatic Sea: a skill assessment

Ocean Science ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 61-71 ◽  
Author(s):  
J. Chiggiato ◽  
P. Oddo

Abstract. In the framework of the Mediterranean Forecasting System (MFS) project, the performance of regional numerical ocean forecasting systems is assessed by means of model-model and model-data comparison. Three different operational systems considered in this study are: the Adriatic REGional Model (AREG); the Adriatic Regional Ocean Modelling System (AdriaROMS) and the Mediterranean Forecasting System General Circulation Model (MFS-GCM). AREG and AdriaROMS are regional implementations (with some dedicated variations) of POM and ROMS, respectively, while MFS-GCM is an OPA based system. The assessment is done through standard scores. In situ and remote sensing data are used to evaluate the system performance. In particular, a set of CTD measurements collected in the whole western Adriatic during January 2006 and one year of satellite derived sea surface temperature measurements (SST) allow to asses a full three-dimensional picture of the operational forecasting systems quality during January 2006 and to draw some preliminary considerations on the temporal fluctuation of scores estimated on surface quantities between summer 2005 and summer 2006. The regional systems share a negative bias in simulated temperature and salinity. Nonetheless, they outperform the MFS-GCM in the shallowest locations. Results on amplitude and phase errors are improved in areas shallower than 50 m, while degraded in deeper locations, where major models deficiencies are related to vertical mixing overestimation. In a basin-wide overview, the two regional models show differences in the local displacement of errors. In addition, in locations where the regional models are mutually correlated, the aggregated mean squared error was found to be smaller, that is a useful outcome of having several operational systems in the same region.

2006 ◽  
Vol 3 (6) ◽  
pp. 2087-2116
Author(s):  
J. Chiggiato ◽  
P. Oddo

Abstract. In the framework of the Mediterranean Forecasting System project (MFS) sub-regional and regional numerical ocean forecasting systems performance are assessed by mean of model-model and model-data comparison. Three different operational systems have been considered in this study: the Adriatic REGional Model (AREG); the AdriaROMS and the Mediterranean Forecasting System general circulation model (MFS model). AREG and AdriaROMS are regional implementations (with some dedicated variations) of POM (Blumberg and Mellor, 1987) and ROMS (Shchepetkin and McWilliams, 2005) respectively, while MFS model is based on OPA (Madec et al., 1998) code. The assessment has been done by means of standard scores. The data used for operational systems assessment derive from in-situ and remote sensing measurements. In particular a set of CTDs covering the whole western Adriatic, collected in January 2006, one year of SST from space born sensors and six months of buoy data. This allowed to have a full three-dimensional picture of the operational forecasting systems quality during January 2006 and some preliminary considerations on the temporal fluctuation of scores estimated on surface (or near surface) quantities between summer 2005 and summer 2006. In general, the regional models are found to be colder and fresher than observations. They eventually outperform the large scale model in the shallowest locations, as expected. Results on amplitude and phase errors are also much better in locations shallower than 50 m, while degraded in deeper locations, where the models tend to have a higher homogeneity along the vertical column compared to observations. In a basin-wide overview, the two regional models show some dissimilarities in the local displacement of errors, something suggested by the full three-dimensional picture depicted using CTDs, but also confirmed by the comparison with SSTs. In locations where the regional models are mutually correlated, the aggregated mean-square-error has been found to be lower, which is a useful outcome of having several operational systems in the same region.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 143-159 ◽  
Author(s):  
S. Cailleau ◽  
J. Chanut ◽  
J.-M. Lellouche ◽  
B. Levier ◽  
C. Maraldi ◽  
...  

Abstract. The regional ocean operational system remains a key element in downscaling from large scale (global or basin scale) systems to coastal ones. It enables the transition between systems in which the resolution and the resolved physics are quite different. Indeed, coastal applications need a system to predict local high frequency events (inferior to the day) such as storm surges, while deep sea applications need a system to predict large scale lower frequency ocean features. In the framework of the ECOOP project, a regional system for the Iberia-Biscay-Ireland area has been upgraded from an existing V0 version to a V2. This paper focuses on the improvements from the V1 system, for which the physics are close to a large scale basin system, to the V2 for which the physics are more adapted to shelf and coastal issues. Strong developments such as higher regional physics resolution in the NEMO Ocean General Circulation Model for tides, non linear free surface and adapted vertical mixing schemes among others have been implemented in the V2 version. Thus, regional thermal fronts due to tidal mixing now appear in the latest version solution and are quite well positioned. Moreover, simulation of the stratification in shelf areas is also improved in the V2.


2020 ◽  
Vol 24 (1) ◽  
pp. 269-291 ◽  
Author(s):  
Alfonso Senatore ◽  
Luca Furnari ◽  
Giuseppe Mendicino

Abstract. Operational meteo-hydrological forecasting chains are affected by many sources of uncertainty. In coastal areas characterized by complex topography, with several medium-to-small size catchments, quantitative precipitation forecast becomes even more challenging due to the interaction of intense air–sea exchanges with coastal orography. For such areas, which are quite common in the Mediterranean Basin, improved representation of sea surface temperature (SST) space–time patterns can be particularly important. The paper focuses on the relative impact of different resolutions of SST representation on regional operational forecasting chains (up to river discharge estimates) over coastal Mediterranean catchments, with respect to two other fundamental options while setting up the system, i.e. the choice of the forcing general circulation model (GCM) and the possible use of a three-dimensional variational assimilation (3D-Var) scheme. Two different kinds of severe hydro-meteorological events that affected the Calabria region (southern Italy) in 2015 are analysed using the WRF-Hydro atmosphere–hydrology modelling system in its uncoupled version. Both of the events are modelled using the 0.25∘ resolution global forecasting system (GFS) and the 16 km resolution integrated forecasting system (IFS) initial and lateral atmospheric boundary conditions, which are from the European Centre for Medium-Range Weather Forecasts (ECMWF), applying the WRF mesoscale model for the dynamical downscaling. For the IFS-driven forecasts, the effects of the 3D-Var scheme are also analysed. Finally, native initial and lower boundary SST data are replaced with data from the Medspiration project by Institut Français de Recherche pour L'Exploitation de la Mer (IFREMER)/Centre European Remote Sensing d'Archivage et de Traitement (CERSAT), which have a 24 h time resolution and a 2.2 km spatial resolution. Precipitation estimates are compared with both ground-based and radar data, as well as discharge estimates with stream gauging stations' data. Overall, the experiments highlight that the added value of high-resolution SST representation can be hidden by other more relevant sources of uncertainty, especially the choice of the general circulation model providing the boundary conditions. Nevertheless, in most cases, high-resolution SST fields show a non-negligible impact on the simulation of the atmospheric boundary layer processes, modifying flow dynamics and/or the amount of precipitated water; thus, this emphasizes the fact that uncertainty in SST representation should be duly taken into account in operational forecasting in coastal areas.


1998 ◽  
Vol 103 (D20) ◽  
pp. 26025-26039 ◽  
Author(s):  
M. Doutriaux-Boucher ◽  
J. Pelon ◽  
V. Trouillet ◽  
G. Sèze ◽  
H. Le Treut ◽  
...  

2013 ◽  
Vol 141 (3) ◽  
pp. 887-899 ◽  
Author(s):  
Urs Schaefer-Rolffs ◽  
Erich Becker

Abstract A dynamic version of Smagorinsky’s diffusion scheme is presented that is applicable for large-eddy simulations (LES) of the atmospheric dynamics. The approach is motivated (i) by the incompatibility of conventional hyperdiffusion schemes with the conservation laws, and (ii) because the conventional Smagorinsky model (which fulfills the conservation laws) does not maintain scale invariance, which is mandatory for a correct simulation of the macroturbulent kinetic energy spectrum. The authors derive a two-dimensional (horizontal) formulation of the dynamic Smagorinsky model (DSM) and present three solutions of the so-called Germano identity: the method of least squares, a solution without invariance of the Smagorinsky parameter, and a tensor-norm solution. The applicability of the tensor-norm approach is confirmed in simulations with the Kühlungsborn mechanistic general circulation model (KMCM). The standard spectral dynamical core of the model facilitates the implementation of the test filter procedure of the DSM. Various energy spectra simulated with the DSM and the conventional Smagorinsky scheme are presented. In particular, the results show that only the DSM allows for a reasonable spectrum at all scales. Latitude–height cross sections of zonal-mean fluid variables are given and show that the DSM preserves the main features of the atmospheric dynamics. The best ratio for the test-filter scale to the resolution scale is found to be 1.33, resulting in dynamically determined Smagorinsky parameters cS from 0.10 to 0.22 in the troposphere. This result is very similar to other values of cS found in previous three-dimensional applications of the DSM.


2007 ◽  
Vol 64 (7) ◽  
pp. 2558-2575 ◽  
Author(s):  
Andrey Gritsun ◽  
Grant Branstator

Abstract The fluctuation–dissipation theorem (FDT) states that for systems with certain properties it is possible to generate a linear operator that gives the response of the system to weak external forcing simply by using covariances and lag-covariances of fluctuations of the undisturbed system. This paper points out that the theorem can be shown to hold for systems with properties very close to the properties of the earth’s atmosphere. As a test of the theorem’s applicability to the atmosphere, a three-dimensional operator for steady responses to external forcing is constructed for data from an atmospheric general circulation model (AGCM). The response of this operator is then compared to the response of the AGCM for various heating functions. In most cases, the FDT-based operator gives three-dimensional responses that are very similar in structure and amplitude to the corresponding GCM responses. The operator is also able to give accurate estimates for the inverse problem in which one derives the forcing that will produce a given response in the AGCM. In the few cases where the operator is not accurate, it appears that the fact that the operator was constructed in a reduced space is at least partly responsible. As an example of the potential utility of a response operator with the accuracy found here, the FDT-based operator is applied to a problem that is difficult to solve with an AGCM. It is used to generate an influence function that shows how well heating at each point on the globe excites the AGCM’s Northern Hemisphere annular mode (NAM). Most of the regions highlighted by this influence function, including the Arctic and tropical Indian Ocean, are verified by AGCM solutions as being effective locations for stimulating the NAM.


Sign in / Sign up

Export Citation Format

Share Document