scholarly journals Concentration Trajectory Route of Air pollution with an Integrated Lagrangian model (C-TRAIL model v1.0) derived from the Community Multiscale Air Quality Modeling (CMAQ model v5.2)

2020 ◽  
Author(s):  
Arman Pouyaei ◽  
Yunsoo Choi ◽  
Jia Jung ◽  
Bavand Sadeghi ◽  
Chul Han Song

Abstract. This paper introduces a reliable and comprehensive Lagrangian output (Concentration Trajectory Route of Air pollution with Integrated Lagrangian model, C-TRAIL version 1.0) from an Eulerian air quality model for validating the source-receptor link by following real polluted air masses. To investigate the concentrations and trajectories of air masses simultaneously, we implement the trajectory-grid (TG) Lagrangian advection scheme in the CMAQ (Community Multiscale Air Quality) Eulerian model version 5.2. The TG algorithm follows the concentrations of representative air packets of species along trajectories determined by the wind field. The generated output from C-TRAIL accurately identifies the origins of pollutants. For validation, we analyzed the results of C-TRAIL during the KORUS-AQ campaign over South Korea. Initially, we implemented C-TRAIL in a simulation of CO concentrations with an emphasis on the long- and short-range transport effect. The output from C-TRAIL reveals that local trajectories were responsible for CO concentrations over Seoul during the stagnant period (May 17–22, 2016) and during the extreme pollution period (May 25–28, 2016), highly polluted air masses from China were distinguished as sources of CO transported to the Seoul Metropolitan Area (SMA). We conclude that long-range transport played a crucial role in high CO concentrations over the receptor area during this period. Furthermore, for May 2016, we find that the potential sources of CO over that SMA were the result of either local transport or long-range transport from the Shandong Peninsula and, in some cases, from north of the SMA. By identifying the trajectories of CO concentrations, one can use the results from C-TRAIL to directly link strong potential sources of pollutants to a receptor in specific regions during various time frames.

2020 ◽  
Vol 13 (8) ◽  
pp. 3489-3505 ◽  
Author(s):  
Arman Pouyaei ◽  
Yunsoo Choi ◽  
Jia Jung ◽  
Bavand Sadeghi ◽  
Chul Han Song

Abstract. This paper introduces a novel Lagrangian model (Concentration Trajectory Route of Air pollution with an Integrated Lagrangian model, C-TRAIL version 1.0) output from a Eulerian air quality model for validating the source–receptor direct link by following polluted air masses. To investigate the concentrations and trajectories of air masses simultaneously, we implement the trajectory-grid (TG) Lagrangian advection scheme in the CMAQ (Community Multiscale Air Quality) Eulerian model version 5.2. The TG algorithm follows the concentrations of representative air “packets” of species along trajectories determined by the wind field. The diagnostic output from C-TRAIL accurately identifies the origins of pollutants. For validation, we analyze the results of C-TRAIL during the KORUS-AQ campaign over South Korea. Initially, we implement C-TRAIL in a simulation of CO concentrations with an emphasis on the long- and short-range transport effects. The output from C-TRAIL reveals that local trajectories were responsible for CO concentrations over Seoul during the stagnant period (17–22 May 2016) and during the extreme pollution period (25–28 May 2016), highly polluted air masses from China were distinguished as sources of CO transported to the Seoul Metropolitan Area (SMA). We conclude that during the study period, long-range transport played a crucial role in high CO concentrations over the receptor area. Furthermore, for May 2016, we find that the potential sources of CO over the SMA were the result of either local transport or long-range transport from the Shandong Peninsula and, in some cases, from regions north of the SMA. By identifying the trajectories of CO concentrations, one can use the results from C-TRAIL to directly link strong potential sources of pollutants to a receptor in specific regions during various time frames.


2015 ◽  
Vol 15 (8) ◽  
pp. 11409-11464 ◽  
Author(s):  
H. Pawar ◽  
S. Garg ◽  
V. Kumar ◽  
H. Sachan ◽  
R. Arya ◽  
...  

Abstract. Many sites in the densely populated Indo Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m−3 for 24 h average PM10 and 60 μg m−3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of PM throughout the year. We quantify the contribution of long range transport to elevated PM levels and the number of exceedance events through a back trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011–June 2013. Air masses arriving at the receptor site were classified into 6 clusters, which represent synoptic scale air mass transport patterns and the average PM mass loadings and number of exceedance events associated with each air mass type were quantified for each season. Long range transport from the west leads to significant enhancements in the average coarse mode PM mass loadings during all seasons. The contribution of long range transport from the west and south west (Source region: Arabia, Thar desert, Middle East and Afghanistan) to coarse mode PM varied between 9 and 57% of the total PM10−2.5 mass. Local pollution episodes (wind speed < 1 m s−1) contributed to enhanced coarse mode PM only during winter season. South easterly air masses (Source region: Eastern IGP) were associated with significantly lower coarse mode PM mass loadings during all seasons. For fine mode PM too, transport from the west usually leads to increased mass loadings during all seasons. Local pollution episodes contributed to enhanced PM2.5 mass loadings during winter and summer season. South easterly air masses were associated with significantly lower PM2.5 mass loadings during all seasons. Using simultaneously measured gas phase tracers we demonstrate that most PM2.5 originated from combustion sources. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long range transport to a much lesser degree. For the local cluster, which represents regional air masses (Source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m−3 for 24 h average PM2.5 was exceeded, varied between 22% of the days associated with this synoptic scale transport during monsoon season and 85% of the days associated with this synoptic scale transport during winter season; the fraction of days during which the national ambient air quality standard (NAAQS) of 100 μg m−3 for the 24 h average PM10 was exceeded, varied between 37% during monsoon season and 84% during winter season. Long range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the Eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the West (Source region: Arabia, Thar desert, Middle East and Afghanistan). In order to bring PM mass loadings in compliance with the national ambient air quality standard (NAAQS) and reduce the number of exceedance days, mitigation of regional pollution sources in the NW-IGP needs to be given highest priority.


2017 ◽  
Author(s):  
Xiaobin Xu ◽  
Hualong Zhang ◽  
Weili Lin ◽  
Ying Wang ◽  
Shihui Jia

Abstract. Both peroxyacetyl nitrate (PAN) and ozone (O3) are key photochemical products in the atmosphere. Most of the previous in-situ observations of both gases have been made in polluted regions and at low altitude sites. Here we present first simultaneous measurements of PAN and O3 at Nam Co (NMC, 90°57′ E, 30°46′ N, 4745 m  a.s.l.), a remote site in the central Tibetan Plateau (TP). The observations were made during summer periods in 2011 and 2012. The PAN concentrations averaged 0.36 ppb (range: 0.11–0.76 ppb) and 0.44 ppb (range: 0.21–0.99 ppb) during 16–25 August 2011 and 15 May to 13 July 2012, respectively. The O3 concentration varied from 27.9 ppb to 96.4 ppb, with an average of 60.0 ppb. Profound diurnal cycles of PAN and O3 were observed, with minimum values around 05:00 LT, steep rises in the early morning, and broader platforms of high values during 09:00–20:00 LT. We find that the evolution of planetary boundary layer (PBL) played a key role in shaping the diurnal patterns of both gases, particularly the rapid increases of PAN and O3 in the early morning. Air entrainment from the free troposphere into the PBL seemed to cause the early morning increase and be a key factor of sustaining the daytime high concentrations of both gases. The days with higher daytime PBL (about 3 km) showed stronger diurnal variations of both gases and were mainly distributed in the drier pre-monsoon period, while those with shallower daytime PBL (about 2 km) showed minor diurnal variations of both gases and were mainly distributed in the humid monsoon period. Episodes of higher PAN levels were observed occasionally at NMC. These PAN episodes were caused either by rapid downward transport of air masses from the middle/upper troposphere or by long-range transport of PAN plumes from North India. The PAN level in the downward transport cases ranged from 0.5 ppb to 0.7 ppb and may indicate the PAN abundance in the middle/upper troposphere. In the long-range transport case, the PAN level varied in the range of 0.6–1.0 ppb. This long-range transport process influenced most of the western and central TP region for about a week in early June 2012. Our results suggest that polluted air masses from South Asia can significantly enhance the PAN level over the TP. As PAN act as a reservoir of NOx, the impacts of pollution transport from South Asia on tropospheric photochemistry over the TP region deserve further studies.


2018 ◽  
Vol 18 (7) ◽  
pp. 1734-1745 ◽  
Author(s):  
Leila Droprinchinski Martins ◽  
Ricardo Hallak ◽  
Rafaela Cruz Alves ◽  
Daniela S. de Almeida ◽  
Rafaela Squizzato ◽  
...  

2021 ◽  
Author(s):  
Ivana Tucaković ◽  
Sarah Mateša ◽  
Ivana Coha ◽  
Marija Marguš ◽  
Milan Čanković ◽  
...  

&lt;p&gt;Croatian Science Foundation MARRES project (MARine lake (Rogoznica) as a model for EcoSystem functioning in a changing environment) aims to investigate the unique environment (slow exchange of seawater with the sea; atmospheric input is the only source of freshwater) of the marine lake which is an example of highly stratified (permanent anoxia bellow 9 m depth), and by climate changes affected marine system in the middle of the eastern Adriatic coast (43.53&amp;#176; N, 15.95&amp;#176; E). The area of the lake is characterized by the extensive tourism and mariculture, and the low impact of local industrial activities. It is also affected by the combined influence of long-range transport of air masses and local emissions (open-fire events).&lt;/p&gt;&lt;p&gt;An important part of the project is focused on the exchange and interaction between atmosphere, water column and sediment by measuring the atmospheric input (wet and dry deposition) of sulphur compounds, organic carbon, trace metals and radionuclides (Be-7, Pb-210).&lt;/p&gt;&lt;p&gt;This work for the first time will present the current state of the measurements of radioactivity in the Rogoznica lake area, including samples of aerosol particulate matter, PM2.5 &lt; 2.5 um, rainwater and lake water column. Namely, the concentrations of Be-7 and Pb-210 in PM2.5 are measured to determine and correlate the dynamics of particle transport, meteorological information, especially origin of air masses and seasonal variation of PM2.5. While presence of Be-7 indicates the recent wet or dry deposition from the upper parts of the atmosphere, Pb-210 may be used as a tracer for continental air masses. Therefore, it can also indicate the influence of the pollution induced by human activity. Regarding that, special attention will be paid to compare results before and during the Covid-19 lockdown periods.&lt;/p&gt;&lt;p&gt;So far, preliminary results do not show significant difference in PM2.5 masses and measured radionuclide activity concentrations for the lockdown period. Be-7 and Pb-210 were regularly detected in aerosols collected on a glass fiber filters during a one-week sampling periods with the air flow rate of 2.3 m&lt;sup&gt;3&lt;/sup&gt;/h. Their activity concentrations are determined by gamma spectrometry using High Purity Germanium detectors. The results are found to be correlated with PM2.5 masses, ranging from 2.9 to 12.2 Bq/m&lt;sup&gt;3&lt;/sup&gt; for Be-7 and from 0.5 to 2.5 Bq/m&lt;sup&gt;3&lt;/sup&gt; for Pb-210. First analyses show that the highest values can be related to the long-range transport of air masses and to the recorded near open-fire event. As expected, Be-7 is also detected in almost every rainwater sample (event), with the activity concentration up to 5.6 Bq/L, while low activities of Pb-210 are detected only sporadically. Related to that, Be-7 is detected in lake water column as well, but only in the surface layer and in samples collected during, or immediately after the rain events.&amp;#160;&lt;/p&gt;&lt;p&gt;Dynamics and seasonal variation of radionuclide activity concentrations in here studied samples will be discussed, and the relationships with some meteorological parameters (temperature, wind speed, relative humidity, precipitation level) as well as local and long-range transport and physico-chemical conditions in the lake water column will be established.&lt;/p&gt;


2017 ◽  
Author(s):  
Zhe Jiang ◽  
Helen Worden ◽  
John R. Worden ◽  
Daven K. Henze ◽  
Dylan B. A. Jones ◽  
...  

Abstract. Decreases in surface emissions of nitrogen oxides (NOx = NO + NO2) in North America have led to substantial improvements in air-quality over the last several decades. Here we show that satellite observations of tropospheric nitrogen dioxide (NO2) columns over the contiguous United States (US) do not decrease after about 2009, while surface NO2 concentrations continue to decline through to the present. This divergence, if it continues, could have a substantial impact on surface air quality due to mixing of free-tropospheric air into the boundary layer. Our results show only limited contributions from local effects such as fossil fuel emissions, lightning, or instrument artifacts, but we do find a possible relationship of NO2 changes to decadal climate variability. Our analysis demonstrates that the intensity of transpacific transport is stronger in El Niño years and weaker in La Niña years, and consequently, that decadal-scale climate variability impacts the contribution of Asian emissions on North American atmospheric composition. Because of the short lifetime, it is usually believed that the direct contribution of long-range transport to tropospheric NOx distribution is limited. If our hypothesis about transported Asian emissions is correct, then this observed divergence between satellite and surface NOx could indicate mechanisms that allow for either NOx or its reservoir species to have a larger than expected effect on North American tropospheric composition. These results therefore suggest more aircraft and satellite studies to determine the possible missing processes in our understanding of the long-range transport of tropospheric NOx.


Tellus B ◽  
1989 ◽  
Vol 41 (3) ◽  
pp. 219-229 ◽  
Author(s):  
Hikaru Satsumabayashi ◽  
Hidemi Kurita ◽  
Yoko Yokouchi ◽  
Hiromasa Ueda

Sign in / Sign up

Export Citation Format

Share Document