scholarly journals Inconsistent decadal variations between surface and free tropospheric nitrogen oxides over United States

2017 ◽  
Author(s):  
Zhe Jiang ◽  
Helen Worden ◽  
John R. Worden ◽  
Daven K. Henze ◽  
Dylan B. A. Jones ◽  
...  

Abstract. Decreases in surface emissions of nitrogen oxides (NOx = NO + NO2) in North America have led to substantial improvements in air-quality over the last several decades. Here we show that satellite observations of tropospheric nitrogen dioxide (NO2) columns over the contiguous United States (US) do not decrease after about 2009, while surface NO2 concentrations continue to decline through to the present. This divergence, if it continues, could have a substantial impact on surface air quality due to mixing of free-tropospheric air into the boundary layer. Our results show only limited contributions from local effects such as fossil fuel emissions, lightning, or instrument artifacts, but we do find a possible relationship of NO2 changes to decadal climate variability. Our analysis demonstrates that the intensity of transpacific transport is stronger in El Niño years and weaker in La Niña years, and consequently, that decadal-scale climate variability impacts the contribution of Asian emissions on North American atmospheric composition. Because of the short lifetime, it is usually believed that the direct contribution of long-range transport to tropospheric NOx distribution is limited. If our hypothesis about transported Asian emissions is correct, then this observed divergence between satellite and surface NOx could indicate mechanisms that allow for either NOx or its reservoir species to have a larger than expected effect on North American tropospheric composition. These results therefore suggest more aircraft and satellite studies to determine the possible missing processes in our understanding of the long-range transport of tropospheric NOx.

2008 ◽  
Vol 47 (2) ◽  
pp. 425-442 ◽  
Author(s):  
S. Kondragunta ◽  
P. Lee ◽  
J. McQueen ◽  
C. Kittaka ◽  
A. I. Prados ◽  
...  

Abstract NOAA’s operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service developmental (research mode) particulate matter (PM2.5) predictions tested during the summer 2004 International Consortium for Atmospheric Research on Transport and Transformation/New England Air Quality Study (ICARTT/NEAQS) field campaign. The forecast period included long-range transport of smoke from fires burning in Canada and Alaska and a regional-scale sulfate event over the Gulf of Mexico and the eastern United States. Over the 30-day time period for which daytime hourly forecasts were compared with observations, the categorical (exceedance defined as AOD > 0.55) forecast accuracy was between 0% and 20%. Hourly normalized mean bias (forecasts − observations) ranged between −50% and +50% with forecasts being positively biased when observed AODs were small and negatively biased when observed AODs were high. Normalized mean errors are between 50% and 100% with the errors on the lower end during the 18–22 July 2004 time period when a regional-scale sulfate event occurred. Spatially, the errors are small over the regions where sulfate plumes were present. The correlation coefficient also showed similar features (spatially and temporally) with a peak value of ∼0.6 during the 18–22 July 2004 time period. The dominance of long-range transport of smoke into the United States during the summer of 2004, neglected in the model predictions, skewed the model forecast performance. Enhanced accuracy and reduced normalized mean errors during the time period when a sulfate event prevailed show that the forecast system has skill in predicting PM2.5 associated with urban/industrial pollution events.


2018 ◽  
Vol 18 (7) ◽  
pp. 1734-1745 ◽  
Author(s):  
Leila Droprinchinski Martins ◽  
Ricardo Hallak ◽  
Rafaela Cruz Alves ◽  
Daniela S. de Almeida ◽  
Rafaela Squizzato ◽  
...  

2015 ◽  
Vol 15 (22) ◽  
pp. 32323-32365 ◽  
Author(s):  
G. Ancellet ◽  
J. Pelon ◽  
J. Totems ◽  
P. Chazette ◽  
A. Bazureau ◽  
...  

Abstract. Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20–30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.


2014 ◽  
Vol 955-959 ◽  
pp. 1341-1345 ◽  
Author(s):  
Xia Zhang ◽  
Liang Tian ◽  
Xian Sun ◽  
Chuang Ye Jiang

Based on meteorological field output by MM5 mesoscale meteorological model and concentration field output by CALPUFF air quality model, “flux method” was applied to study effects of long-range transport of air pollutants on the atmospheric environment, in which micro-element method was used to solve the process of air pollutants transport in long-range of three-dimensional space. This method was first applied in studying a construction project’s impact on air quality in Guanzhong region of Shanxi Province. The results shows that the deviation of flux method is less which the value is 16 percent, and among all year around, the pollutants transport the more flux to the ENE and WSW directions of the project compared to other directions. Additional, the flux of fall and winter is more than it of spring and summer, and the project has a more severe influence of atmospheric environment in Xi’an city than it of Weinan city.


1997 ◽  
Vol 102 (D10) ◽  
pp. 11225-11238 ◽  
Author(s):  
Kevin D. Perry ◽  
Thomas A. Cahill ◽  
Robert A. Eldred ◽  
Dabrina D. Dutcher ◽  
Thomas E. Gill

2007 ◽  
Vol 46 (8) ◽  
pp. 1230-1251 ◽  
Author(s):  
George Kallos ◽  
Marina Astitha ◽  
Petros Katsafados ◽  
Chris Spyrou

Abstract During the past 20 years, organized experimental campaigns as well as continuous development and implementation of air-pollution modeling have led to significant gains in the understanding of the paths and scales of pollutant transport and transformation in the greater Mediterranean region (GMR). The work presented in this paper has two major objectives: 1) to summarize the existing knowledge on the transport paths of particulate matter (PM) in the GMR and 2) to illustrate some new findings related to the transport and transformation properties of PM in the GMR. Findings from previous studies indicate that anthropogenically produced air pollutants from European sources can be transported over long distances, reaching Africa, the Atlantic Ocean, and North America. The PM of natural origin, like Saharan dust, can be transported toward the Atlantic Ocean and North America mostly during the warm period of the year. Recent model simulations and studies in the area indicate that specific long-range transport patterns of aerosols, such as the transport from Asia and the Indian Ocean, central Africa, or America, have negligible or at best limited contribution to air-quality degradation in the GMR when compared with the other sources. Also, new findings from this work suggest that the imposed European Union limits on PM cannot be applicable for southern Europe unless the origin (natural or anthropogenic) of the PM is taken into account. The impacts of high PM levels in the GMR are not limited only to air quality, but also include serious implications for the water budget and the regional climate. These are issues that require extensive investigation because the processes involved are complex, and further model development is needed to include the relevant physicochemical processes properly.


2020 ◽  
Author(s):  
Arman Pouyaei ◽  
Yunsoo Choi ◽  
Jia Jung ◽  
Bavand Sadeghi ◽  
Chul Han Song

Abstract. This paper introduces a reliable and comprehensive Lagrangian output (Concentration Trajectory Route of Air pollution with Integrated Lagrangian model, C-TRAIL version 1.0) from an Eulerian air quality model for validating the source-receptor link by following real polluted air masses. To investigate the concentrations and trajectories of air masses simultaneously, we implement the trajectory-grid (TG) Lagrangian advection scheme in the CMAQ (Community Multiscale Air Quality) Eulerian model version 5.2. The TG algorithm follows the concentrations of representative air packets of species along trajectories determined by the wind field. The generated output from C-TRAIL accurately identifies the origins of pollutants. For validation, we analyzed the results of C-TRAIL during the KORUS-AQ campaign over South Korea. Initially, we implemented C-TRAIL in a simulation of CO concentrations with an emphasis on the long- and short-range transport effect. The output from C-TRAIL reveals that local trajectories were responsible for CO concentrations over Seoul during the stagnant period (May 17–22, 2016) and during the extreme pollution period (May 25–28, 2016), highly polluted air masses from China were distinguished as sources of CO transported to the Seoul Metropolitan Area (SMA). We conclude that long-range transport played a crucial role in high CO concentrations over the receptor area during this period. Furthermore, for May 2016, we find that the potential sources of CO over that SMA were the result of either local transport or long-range transport from the Shandong Peninsula and, in some cases, from north of the SMA. By identifying the trajectories of CO concentrations, one can use the results from C-TRAIL to directly link strong potential sources of pollutants to a receptor in specific regions during various time frames.


2010 ◽  
Vol 10 (5) ◽  
pp. 12079-12131 ◽  
Author(s):  
M. Huang ◽  
G. R. Carmichael ◽  
B. Adhikary ◽  
S. N. Spak ◽  
S. Kulkarni ◽  
...  

Abstract. Multi-scale tracer and full-chemistry simulations with the STEM atmospheric chemistry model are used to analyze the effects of transported background ozone (O3) from the eastern Pacific on California air quality during the ARCTAS-CARB experiment conducted in June 2008. Previous work has focused on the importance of long-range transport of O3 to North America air quality in springtime. However during this summer experiment the long-range transport of O3 is also shown to be important. Simulated and observed O3 transport patterns from the coast to inland northern California are shown to vary based on meteorological conditions and the oceanic O3 profiles, which are strongly episodically affected by Asian inflows. Analysis of the correlations of O3 at various altitudes above the coastal site at Trinidad Head and at a downwind surface site in northern California, show that under long-range transport events, high O3 air-masses (O3>60 ppb) at altitudes between about 2 and 4 km can be transported inland and can significantly influence surface O3 20–30 h later. These results show the importance of characterizing the vertical structure of the lateral boundary conditions (LBC) needed in air quality simulations. The importance of the LBC on O3 prediction during this period is further studied through a series of sensitivity studies using different forms of LBC. It is shown that the use of the LBC downscaled from RAQMS global model that assimilated MLS and OMI data improves the model performance. We also show that the predictions can be further improved through the use of LBC based on NASA DC-8 airborne observations during the ARCTAS-CARB experiment. These results indicate the need to develop observational strategies to improve the representation of the vertical and temporal variations in the air over the eastern Pacific.


Sign in / Sign up

Export Citation Format

Share Document