scholarly journals Review for gmd-2020-142 "Assessing the simulated soil thermal regime from Noah-MPLSM v1.1 for near-surface permafrost modeling on the Qinghai-Tibet Plateau"

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qingyan Xie ◽  
Jianping Li ◽  
Yufei Zhao

The Qinghai-Tibet Plateau (QTP) holds massive freshwater resources and is one of the most active regions in the world with respect to the hydrological cycle. Soil moisture (SM) plays a critical role in hydrological processes and is important for plant growth and ecosystem stability. To investigate the relationship between climatic factors (air temperature and precipitation) and SM during the growing season in various climate zones on the QTP, data from three observational stations were analyzed. The results showed that the daily average (Tave) and minimum air temperatures (Tmin) significantly influenced SM levels at all depths analyzed (i.e., 10, 20, 30, 40, and 50 cm deep) at the three stations, and Tmin had a stronger effect on SM than did Tave. However, the daily maximum air temperature (Tmax) generally had little effect on SM, although it had showed some effects on SM in the middle and deeper layers at the Jiali station. Precipitation was an important factor that significantly influenced the SM at all depths at the three stations, but the influence on SM in the middle and deep layers lagged the direct effect on near-surface SM by 5–7 days. These results suggest that environment characterized by lower temperatures and higher precipitation may promote SM conservation during the growing season and in turn support ecosystem stability on the QTP.


2016 ◽  
Vol 83 (1) ◽  
pp. 193-209 ◽  
Author(s):  
Wenbing Yu ◽  
Fenglei Han ◽  
Weibo Liu ◽  
Stuart A. Harris

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4200 ◽  
Author(s):  
Anyuan Li ◽  
Caichu Xia ◽  
Chunyan Bao ◽  
Guoan Yin

It is essential to monitor the ground temperature over large areas to understand and predict the effects of climate change on permafrost due to its rapid warming on the Qinghai-Tibet Plateau (QTP). Land surface temperature (LST) is an important parameter for the energy budget of permafrost environments. Moderate Resolution Imaging Spectroradiometer (MODIS) LST products are especially valuable for detecting permafrost thermal dynamics across the QTP. This study presents a comparison of MODIS-LST values with in situ near-surface air temperature (Ta), and ground surface temperature (GST) obtained from 2014 to 2016 at five sites in Beiluhe basin, a representative permafrost region on the QTP. Furthermore, the performance of the thermal permafrost model forced by MODIS-LSTs was studied. Averaged LSTs are found to strongly correlated with Ta and GST with R2 values being around 0.9. There is a significant warm bias (4.43–4.67 °C) between averaged LST and Ta, and a slight warm bias (0.67–2.66 °C) between averaged LST and GST. This study indicates that averaged MODIS-LST is supposed to be a useful data source for permafrost monitoring. The modeled ground temperatures and active-layer thickness have a good agreement with the measurements, with a difference of less than 1.0 °C and 0.4 m, respectively.


2021 ◽  
Vol 250 ◽  
pp. 105401
Author(s):  
Baojuan Huai ◽  
Junyao Wang ◽  
Weijun Sun ◽  
Yetang Wang ◽  
Wuying Zhang

Sign in / Sign up

Export Citation Format

Share Document