scholarly journals Coupling technologies for Earth System Modelling

2012 ◽  
Vol 5 (6) ◽  
pp. 1589-1596 ◽  
Author(s):  
S. Valcke ◽  
V. Balaji ◽  
A. Craig ◽  
C. DeLuca ◽  
R. Dunlap ◽  
...  

Abstract. This paper presents a review of the software currently used in climate modelling in general and in CMIP5 in particular to couple the numerical codes representing the different components of the Earth System. The coupling technologies presented show common features, such as the ability to communicate and regrid data, and also offer different functions and implementations. Design characteristics of the different approaches are discussed as well as future challenges arising from the increasing complexity of scientific problems and computing platforms.

2012 ◽  
Vol 5 (3) ◽  
pp. 1987-2006 ◽  
Author(s):  
S. Valcke ◽  
V. Balaji ◽  
A. Craig ◽  
C. DeLuca ◽  
R. Dunlap ◽  
...  

Abstract. This paper presents a review of the software currently used in climate modelling in general and in CMIP5 in particular to couple the numerical codes representing the different components of the Earth system. The coupling technologies presented show common features, such as the ability to communicate and regrid data, but also offer different functions and implementations. Design characteristics of the different approaches are discussed as well as future challenges arising from the increasing complexity of scientific problems and computing platforms.


2021 ◽  
Author(s):  
David Hall

<p>This talk gives an overview of cutting-edge artificial intelligence applications and techniques for the earth-system sciences. We survey the most important recent contributions in areas including extreme weather, physics emulation, nowcasting, medium-range forecasting, uncertainty quantification, bias-correction, generative adversarial networks, data in-painting, network-HPC coupling, physics-informed neural nets, and geoengineering, amongst others. Then, we describe recent AI breakthroughs that have the potential to be of greatest benefit to the geosciences. We also discuss major open challenges in AI for science and their potential solutions. This talk is a living document, in that it is updated frequently, in order to accurately relect this rapidly changing field.</p>


2020 ◽  
Author(s):  
Dirk Barbi ◽  
Nadine Wieters ◽  
Paul Gierz ◽  
Fatemeh Chegini ◽  
Sara Khosravi ◽  
...  

Abstract. Earth system and climate modelling involves the simulation of processes on a wide range of scales and within and across various components of the Earth system. In practice, component models are often developed independently by different research groups and then combined using a dedicated coupling software. This procedure not only leads to a strongly growing number of available versions of model components and coupled setups but also to model- and system-dependent ways of obtaining and operating them. Therefore, implementing these Earth System Models (ESMs) can be challenging and extremely time-consuming, especially for less experienced modellers, or scientists aiming to use different ESMs as in the case of inter-comparison projects. To assist researchers and modellers by reducing avoidable complexity, we developed the ESM-Tools software, which provides a standard way for downloading, configuring, compiling, running and monitoring different models - coupled ESMs and stand-alone models alike - on a variety of High-Performance Computing (HPC) systems. (The ESM-Tools are equally applicable and helpful for stand-alone as for coupled models. In fact, the ESM-Tools are used as standard compile and runtime infrastructure for FESOM2, and currently also applied for ECHAM and ICON standalone simulations. As coupled ESMs are technically the more challenging tasks, we will focus on coupled setups, always implying that stand-alone models can benefit in the same way.) With the ESM-Tools, the user is only required to provide a short script consisting of only the experiment specific definitions, while the software executes all the phases of a simulation in the correct order. The software, which is well documented and easy to install and use, currently supports four ocean models, three atmosphere models, two biogeochemistry models, an ice sheet model, an isostatic adjustment model, a hydrology model and a land-surface model. ESM-Tools has been entirely re-coded in a high-level programming language (Python) and provides researchers with an even more user-friendly interface for Earth system modelling lately. The ESM-Tools were developed within the framework of the project Advanced Earth System Model Capacity, supported by the Helmholtz Association.


2020 ◽  
Author(s):  
Luisa Cristini ◽  

<p>With climate change and the conjoint challenges of food availability, clean water and geo-energy resources, our society is facing major challenges in the near future. These challenges are hard to address, because projections of Earth system change involve uncertainties that require quantification. Therefore, the Earth system science community tries to develop tools that provide decision-makers with the information required to effectively manage these issues.</p><p>The Advanced Earth System Modelling Capacity project (ESM) aims to enable such tools, investigating problems by looking at interactions between different Earth system components and improve their representation in numerical models. The project was funded by the German Helmholtz Association in April 2017 and involves eight research centers across Germany. The ultimate goal of the project is to represent the Earth system and how it changes with a world-leading modelling infrastructure that will support the process of developing solutions for the grand challenges we are facing.</p><p>The five different work packages of the project are working on topics such as enhancing the representation of Earth system model compartments, develop a flexible framework for coupling of Earth system model components, advance the Earth system data assimilation capacity, diagnose Earth system models, further develop cutting-edge frontier simulations, cross-scale modelling, and contribute to the shaping of a national strategy for Earth system modelling. The project also engages in training activities to educate and transfer knowledge to the next generation of scientists.</p><p>Since its initiation the project contributed with important results to several key model systems and platforms. In this presentation, we will highlight some current results and discuss advances in our Earth system modelling community and the way forward.</p>


2021 ◽  
Vol 14 (6) ◽  
pp. 4051-4067
Author(s):  
Dirk Barbi ◽  
Nadine Wieters ◽  
Paul Gierz ◽  
Miguel Andrés-Martínez ◽  
Deniz Ural ◽  
...  

Abstract. Earth system and climate modelling involves the simulation of processes on a wide range of scales and within and across various compartments of the Earth system. In practice, component models are often developed independently by different research groups, adapted by others to their special interests and then combined using a dedicated coupling software. This procedure not only leads to a strongly growing number of available versions of model components and coupled setups but also to model- and high-performance computing (HPC)-system-dependent ways of obtaining, configuring, building and operating them. Therefore, implementing these Earth system models (ESMs) can be challenging and extremely time consuming, especially for less experienced modellers or scientists aiming to use different ESMs as in the case of intercomparison projects. To assist researchers and modellers by reducing avoidable complexity, we developed the ESM-Tools software, which provides a standard way for downloading, configuring, compiling, running and monitoring different models on a variety of HPC systems. It should be noted that ESM-Tools is not a coupling software itself but a workflow and infrastructure management tool to provide access to increase usability of already existing components and coupled setups. As coupled ESMs are technically the more challenging tasks, we will focus on coupled setups, always implying that stand-alone models can benefit in the same way. With ESM-Tools, the user is only required to provide a short script consisting of only the experiment-specific definitions, while the software executes all the phases of a simulation in the correct order. The software, which is well documented and easy to install and use, currently supports four ocean models, three atmosphere models, two biogeochemistry models, an ice sheet model, an isostatic adjustment model, a hydrology model and a land-surface model. Compared to previous versions, ESM-Tools has lately been entirely recoded in a high-level programming language (Python) and provides researchers with an even more user-friendly interface for Earth system modelling. ESM-Tools was developed within the framework of the Advanced Earth System Model Capacity project, supported by the Helmholtz Association.


2020 ◽  
Author(s):  
Luisa Cristini ◽  
Robert Sausen ◽  
Mariano Mertens ◽  
Nadine Wieters ◽  
Sara Pasqualetto

<p>The Earth System Modelling Capacity (ESM) project is a 3-year effort funded by the Helmholtz Association started in April 2017 and involving eight research centres across Germany. The project has a strong knowledge transfer component aiming to provide decision-makers with relevant tools in order to face grand challenges in the near future and to support early career scientists (PhD students and early career postdoctoral researchers) from ESM project partner centres as well as the national and international community in developing and strengthening their knowledge on Earth system modelling, as one of the primary efforts to establish a legacy for the project.</p><p>From 9<sup>th</sup> to 19<sup>th</sup> of September 2019, the ESM summer school was held in Bad Aibling (Germany) with 50 participating students from 26 institutes placed all over the world. A core objective of the school was to train and educate early-career scientists from a wide range of discipline and with a diverse international and gender background to apply cutting edge science in the study of the Earth system and at the same time to engage in a stimulating exercise of knowledge transfer for the project.</p><p>During the 10-day summer school, students had four lectures daily about topics related to the Earth system and its components, from atmospheric dynamics to terrestrial modelling, from the modelling of waves and oceans to that of ice sheets and glaciers. The school included practical exercises and hands-on sessions that involved coding and building mini-cluster computers, building on the advanced technical knowledge of ESM partners and scientists. The lectures were held by thirty researchers from the ESM Project’s partner institutes and beyond. Two poster sessions were also organized, where students had the chance to present their work to their peers and to the senior scientists, exchange experiences, share results and receive feedbacks from fellow students and lecturers.</p><p>In this presentation, we will present the concept and key features of the summer school, content and organisation, and also offer the students’ feedback collected after the school in an effort to showcase an example of how summer schools remain a powerful mean to value diversities and create an inclusive environment in (Earth system) science.</p>


2021 ◽  
Author(s):  
Dirk Barbi ◽  
Miguel Andrés-Martínez ◽  
Deniz Ural ◽  
Luisa Cristini ◽  
Paul Gierz ◽  
...  

<p>During the last two decades, modern societies have gradually understood the urge to tackle the climate change challenge, and consequently, a growing number of national and international initiatives have been launched with the aim of better understanding the Earth System. In this context, Earth System Modelling (ESM) has rapidly expanded, leading to a large number of research groups targeting the many components of the system at different scales and with different levels of interactions between components. This has led to the development of increasing number of models, couplings, versions tuned to address different scales or scenarios, and model-specific compilation and operating procedures. This operational complexity makes the implementation of multiple models excessively time consuming especially for less experienced modellers.</p><p>ESM-Tools is an open-source modular software written in Python, aimed to overcome many of the difficulties associated to the operation of ESMs. ESM-Tools allows for downloading, compiling and running a wide range of ESM models and coupled setups in the most important HPC facilities available in Germany. It currently supports multiple models for ocean, atmosphere, biochemistry, ice sheet, isostatic adjustment, hydrology, and land-surface, and six ocean-atmosphere and two ice-sheet-ocean-atmosphere coupled setups, through two couplers (included modularly through ESM-Interface). The tools are coded in Python while all the component and coupling information is contained in easy-to-read YAML files. The front-end user is required to provide only a short script written in YAML format, containing the experiment specific definitions. This user-friendly interface makes ESM-Tools a convenient software for training and educational purposes. Simultaneously, its modularity and the separation between the component-specific information and tool scripts facilitates the implementation and maintenance of new components, couplings and versions. ESM-Tools team of scientific programmers provides also user support, workshops and detailed documentation. The ESM-Tools were developed within the framework of the project Advance Earth System Model Capacity, supported by Helmholtz Association and has become one of the main pillars of the German infrastructure for Climate Modelling.</p>


2018 ◽  
Vol 11 (9) ◽  
pp. 3781-3794 ◽  
Author(s):  
Joy Merwin Monteiro ◽  
Jeremy McGibbon ◽  
Rodrigo Caballero

Abstract. sympl (System for Modelling Planets) and climt (Climate Modelling and Diagnostics Toolkit) are an attempt to rethink climate modelling frameworks from the ground up. The aim is to use expressive data structures available in the scientific Python ecosystem along with best practices in software design to allow scientists to easily and reliably combine model components to represent the climate system at a desired level of complexity and to enable users to fully understand what the model is doing. sympl is a framework which formulates the model in terms of a state that gets evolved forward in time or modified within a specific time by well-defined components. sympl's design facilitates building models that are self-documenting, are highly interoperable, and provide fine-grained control over model components and behaviour. sympl components contain all relevant information about the input they expect and output that they provide. Components are designed to be easily interchanged, even when they rely on different units or array configurations. sympl provides basic functions and objects which could be used in any type of Earth system model. climt is an Earth system modelling toolkit that contains scientific components built using sympl base objects. These include both pure Python components and wrapped Fortran libraries. climt provides functionality requiring model-specific assumptions, such as state initialization and grid configuration. climt's programming interface designed to be easy to use and thus appealing to a wide audience. Model building, configuration and execution are performed through a Python script (or Jupyter Notebook), enabling researchers to build an end-to-end Python-based pipeline along with popular Python data analysis and visualization tools.


Author(s):  
Sophie Valcke ◽  
René Redler ◽  
Reinhard Budich

Sign in / Sign up

Export Citation Format

Share Document