scholarly journals Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California

2016 ◽  
Vol 9 (5) ◽  
pp. 1959-1976 ◽  
Author(s):  
Chun Zhao ◽  
Maoyi Huang ◽  
Jerome D. Fast ◽  
Larry K. Berg ◽  
Yun Qian ◽  
...  

Abstract. Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.


2016 ◽  
Author(s):  
Chun Zhao ◽  
Maoyi Huang ◽  
Jerome D. Fast ◽  
Larry K. Berg ◽  
Yun Qian ◽  
...  

Abstract. Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land-surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface parameterization CLM4 in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a standalone vegetation map that differs from what is used by land surface parameterizations. This improved modeling framework is used to investigate the impact of two land surface parameterizations, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provide an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface parameterizations do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover datasets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry, and consequently secondary organic aerosol formation.



2020 ◽  
Vol 20 (21) ◽  
pp. 12741-12759
Author(s):  
Chen Dayan ◽  
Erick Fredj ◽  
Pawel K. Misztal ◽  
Maor Gabay ◽  
Alex B. Guenther ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) from terrestrial vegetation and marine organisms contribute to photochemical pollution and affect the radiation budget, cloud properties and precipitation via secondary organic aerosol formation. Their emission from both marine and terrestrial ecosystems is substantially affected by climate change in ways that are currently not well characterized. The Eastern Mediterranean Sea was identified as a climate change “hot spot”, making it a natural laboratory for investigating the impact of climate change on BVOC emissions from both terrestrial and marine vegetation. We quantified the mixing ratios of a suite of volatile organic compounds (VOCs), including isoprene, dimethyl sulfide (DMS), acetone, acetaldehyde and monoterpenes, at a mixed vegetation site ∼4 km from the southeastern tip of the Levantine Basin, where the sea surface temperature (SST) maximizes and ultra-oligotrophic conditions prevail. The measurements were performed between July and October 2015 using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). The analyses were supported by the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1). For isoprene and DMS mixing ratios, we identified a dominant contribution from the seawater. Our analyses further suggest a major contribution, at least for monoterpenes, from the seawater. Our results indicate that the Levantine Basin greatly contributes to isoprene emissions, corresponding with mixing ratios of up to ∼9 ppbv several kilometers inland from the sea shore. This highlights the need to update air quality and climate models to account for the impact of SST on marine isoprene emission. The DMS mixing ratios were 1 to 2 orders of magnitude lower than those measured in 1995 in the same area, suggesting a dramatic decrease in emissions due to changes in the species composition induced by the rise in SST.



2021 ◽  
Author(s):  
Deborah F. McGlynn ◽  
Laura E. R. Barry ◽  
Manuel T. Lerdau ◽  
Sally E. Pusede ◽  
Gabriel Isaacman-VanWertz

Abstract. Despite the significant contribution of biogenic volatile organic compounds (BVOCs) to organic aerosol formation and ozone production and loss, there are few long-term, year-round, ongoing measurements of their concentrations and their impacts on atmospheric reactivity. To address this gap, we present one year of hourly measurements of chemically resolved BVOCs between September 15, 2019, and September 15, 2020, collected at a research tower in Central Virginia in a mixed forest representative of ecosystems in the Southeastern U.S. Concentrations of isoprene, isoprene reaction products, monoterpenes, and sesquiterpenes are described and examined for their impact on hydroxy radical (OH), ozone, and nitrate reactivity. Concentrations of isoprene range from negligible in the winter to typical summertime 24-hour averages of 4–6 ppb, while monoterpenes have more stable concentrations in the range of tenths of a ppb up to ~ 1 ppb year-round. Sesquiterpenes are typically observed at concentrations of < 10 ppt, but this represents a lower bound in their abundance. In the growing season, isoprene dominates OH reactivity but is less important for ozone and nitrate reactivity. Monoterpenes are the most important BVOCs for ozone and nitrate reactivity throughout the year and for OH reactivity outside of the growing season. To better understand the impact of this compound class on OH, ozone, and nitrate reactivity, the role of individual monoterpenes is examined. Despite the dominant contribution of α-pinene to total monoterpene mass, the average rate constants for reaction of the monoterpene mixture with atmospheric oxidants is between 20% and 30% faster than α-pinene due to the contribution of more-reactive but less abundant compounds. A majority of reactivity comes from α-pinene and limonene (the most significant low-concentration, high-reactivity isomer), highlighting the importance of both concentration and structure in assessing atmospheric impacts of emissions.



2021 ◽  
Vol 13 (12) ◽  
pp. 6570
Author(s):  
Asma Akter Parlin ◽  
Monami Kondo ◽  
Noriaki Watanabe ◽  
Kengo Nakamura ◽  
Mizuki Yamada ◽  
...  

The quantitative understanding of the transport behavior of volatile organic compounds (VOCs) in near-surface soils is highly important in light of the potential impacts of soil VOC emissions on the air quality and climate. Previous studies have suggested that temperature changes affect the transport behavior; however, the effects are not well understood. Indeed, much larger changes in the VOC flux under in situ dynamic temperatures than those expected from the temperature dependence of the diffusion coefficients of VOCs in the air have been suggested but rarely investigated experimentally. Here, we present the results of a set of experiments on the upward vertical vapor-phase diffusive transport of benzene and trichloroethylene (TCE) in sandy soils with water contents ranging from an air-dried value to 10 wt% during sinusoidal temperature variation between 20 and 30 °C. In all experiments, the flux from the soil surface was correlated with the temperature, as expected. However, the changes in flux under wet conditions were unexpectedly large and increased with increasing water content; they were also larger for TCE, the volatility of which depended more strongly on the temperature. Additionally, the larger flux changes were accompanied by a recently discovered water-induced inverse correlation between temperature and flux into the overlying soil. These results demonstrated that the flux changes of VOCs under dynamic temperatures could be increased by volatilization-dissolution interactions of VOCs with water. Future extensive studies on this newly discovered phenomenon would contribute to a better understanding of the impacts of soil VOC emissions on the air quality and climate.



2016 ◽  
Author(s):  
N. L. Ng ◽  
S. S. Brown ◽  
A. T. Archibald ◽  
E. Atlas ◽  
R. C. Cohen ◽  
...  

Abstract. Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than three decades, during which time a large body of research has emerged from laboratory, field and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first section summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.



2021 ◽  
Vol 21 (20) ◽  
pp. 15755-15770
Author(s):  
Deborah F. McGlynn ◽  
Laura E. R. Barry ◽  
Manuel T. Lerdau ◽  
Sally E. Pusede ◽  
Gabriel Isaacman-VanWertz

Abstract. Despite the significant contribution of biogenic volatile organic compounds (BVOCs) to organic aerosol formation and ozone production and loss, there are few long-term, year-round, ongoing measurements of their volume mixing ratios and quantification of their impacts on atmospheric reactivity. To address this gap, we present 1 year of hourly measurements of chemically resolved BVOCs between 15 September 2019 and 15 September 2020, collected at a research tower in Central Virginia in a mixed forest representative of ecosystems in the Southeastern US. Mixing ratios of isoprene, isoprene oxidation products, monoterpenes, and sesquiterpenes are described and examined for their impact on the hydroxy radical (OH), ozone, and nitrate reactivity. Mixing ratios of isoprene range from negligible in the winter to typical summertime 24 h averages of 4–6 ppb, while monoterpenes have more stable mixing ratios in the range of tenths of a part per billion up to ∼2 ppb year-round. Sesquiterpenes are typically observed at mixing ratios of <10 ppt, but this represents a lower bound in their abundance. In the growing season, isoprene dominates OH reactivity but is less important for ozone and nitrate reactivity. Monoterpenes are the most important BVOCs for ozone and nitrate reactivity throughout the year and for OH reactivity outside of the growing season. To better understand the impact of this compound class on OH, ozone, and nitrate reactivity, the role of individual monoterpenes is examined. Despite the dominant contribution of α-pinene to total monoterpene mass, the average reaction rate of the monoterpene mixture with atmospheric oxidants is between 25 % and 30 % faster than α-pinene due to the contribution of more reactive but less abundant compounds. A majority of reactivity comes from α-pinene and limonene (the most significant low-mixing-ratio, high-reactivity isomer), highlighting the importance of both mixing ratio and structure in assessing atmospheric impacts of emissions.



2005 ◽  
Vol 5 (5) ◽  
pp. 9127-9168 ◽  
Author(s):  
V. Marécal ◽  
E. D. Rivière ◽  
G. Held ◽  
S. Cautenet ◽  
S. Freitas

Abstract. The aim of this work is to study the local impact of deep convection on the upper troposphere/lower stratosphere air composition. For this purpose, we performed a 42-h simulation of a severe convective event near Bauru, in the central State of São Paulo (Brazil), with the 3-D mesoscale model RAMS coupled on-line with a chemistry model. The meteorological results of the simulation are evaluated using comparisons with near surface measurements of wind and temperature and with surface rainfall rates derived from radar observations. These comparisons show that the model produces meteorological fields consistent with the observations. This present paper (Part I) is devoted to the analysis of the ozone precursors in the upper troposphere/lower stratosphere: CO, NOx (=NO+NO2) and non-methane volatile organic compounds. The simulation results show that the distribution of CO with altitude is closely related to the upward convective motions and consecutive outflow at the top of the convective cells leading to a bulge of CO between 7 km altitude and the cold point tropopause (around 17km altitude). The model results for CO are consistent with satellite-borne measurements in the 700–500 hPa layer. The simulation also indicates enhanced amounts of NOx up to 2 ppbv in the 7–17 km altitude layer. These NOx concentrations are mainly produced by the lightning associated with the intense convective activity. Stratospheric NOx are not affected by the tropospheric NOx since there is, on average, no significant upward NOx flux through the tropopause. For non-methane volatile organic compounds, the convective activity tends to significantly increase the amount of ozone precursors in the 7–17 km layer by dynamical effects as for CO. During daytime, this bulge is largely reduced in the upper part of the layer for reactive species, such as isoprene, ethene and propene, since they undergo chemical loss. This loss is mainly due to their reactions with OH, OH mixing ratio being significantly increased during the daytime by the production of NOx by lightning. The bulges of ozone precursors in the upper troposphere are likely to be of importance in the ozone budget in the upper troposphere and lower stratosphere. This issue is discussed in Part II of this series of papers.



2017 ◽  
Vol 44 (8) ◽  
pp. 3887-3896 ◽  
Author(s):  
Michelle J. Kim ◽  
Gordon A. Novak ◽  
Matthew C. Zoerb ◽  
Mingxi Yang ◽  
Byron W. Blomquist ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document