scholarly journals Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme

2016 ◽  
Vol 9 (9) ◽  
pp. 2951-2972 ◽  
Author(s):  
Yiying Chen ◽  
James Ryder ◽  
Vladislav Bastrikov ◽  
Matthew J. McGrath ◽  
Kim Naudts ◽  
...  

Abstract. Canopy structure is one of the most important vegetation characteristics for land–atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems – CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes – namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.

2016 ◽  
Author(s):  
Yiying Chen ◽  
James Ryder ◽  
Vladislav Bastrikov ◽  
Matthew J. McGrath ◽  
Kim Naudts ◽  
...  

Abstract. Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems – CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad leaved and evergreen needle leaved forest with a maximum LAI (all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes – namely the diffusion, advection and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence and resistances modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although, the multi-layer model simulation results showed little or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compounds (BVOC) emissions from the terrestrial ecosystem.


2021 ◽  
Author(s):  
Gabriele Arduini ◽  
Ervin Zsoter ◽  
Hannah Cloke ◽  
Elisabeth Stephens ◽  
Christel Prudhomme

<p>Snow processes, with the water stored in the snowpack and released as snowmelt, are very important components of the water balance, in particular in high latitude and mountain regions. The evolution of the snow cover and the timing of the snow melt can have major impact on river discharge. Land surface models are used in Earth System models to compute exchanges of water, energy and momentum between the atmosphere and the surface underneath, and also to compute other components of the hydrological cycle. In order to improve the snow representation, a new multi-layer snow scheme is under development in the HTESSEL land surface model of the European Centre for Medium‐Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS), to replace the current single-layer snow scheme used in HTESSEL. The new scheme has already been shown to improve snow and 2‐metre temperature, while in this study, the wider hydrological impact is evaluated and documented.</p><p>The analysis is done in the reanalysis context by comparing two ERA5-forced offline HTESSEL experiments. The runoff output of HTESSEL is coupled to the CaMa-Flood hydrodynamic model in order to derive river discharge. The analysis is done globally for the period between 1980-2018. The evaluation was carried out using over 1000 discharge observation time-series with varying catchment size. The hydrological response of the multi-layer snow scheme is generally positive, but in some areas the improvement is not clear and can even be negative with deteriorated signal in river discharge. Further investigation is needed to understand the complex hydrological impact of the new snow scheme, making sure it contributes to an improved description of all hydrological components of the Earth System.</p>


2020 ◽  
Author(s):  
Anthony Bernus ◽  
Catherine Ottle ◽  
Nina Raoult

<p>Lakes play a major role on local climate and boundary layer stratification. At global scale, they have been shown to have an impact on the energy budget, (see for example Le Moigne et al., 2016 or Bonan, 1995 ) . To represent the energy budget of lakes at a global scale, the FLake (Mironov et al, 2008) lake model has been coupled to the ORCHIDEE land surface model - the continental part of the IPSL earth system model. By including Flake in ORCHIDEE, we aim to improve the representation of land surface temperature and heat fluxes. Using the standard CMIP6 configuration of ORCHIDEE,  two 40-year simulations were generated (one coupled with FLake and one without) using the CRUJRA meteorological forcing data at a spatial resolution of 0.5°. We compare land surface temperatures and heat fluxes from the two ORCHIDEE simulations and assess the impacts of lakes on surface energy budgets. MODIS satellite land surface temperature products will be used to validate the simulations. We expect a better fit between the simulated land surface temperature and the MODIS data when the FLake configuration is used. The preliminary results of the comparison will be presented.</p>


2004 ◽  
Vol 43 (10) ◽  
pp. 1477-1497 ◽  
Author(s):  
Youlong Xia ◽  
Mrinal K. Sen ◽  
Charles S. Jackson ◽  
Paul L. Stoffa

Abstract This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.


2017 ◽  
Author(s):  
Yi-Ying Chen ◽  
Barry Gardiner ◽  
Ferenc Pasztor ◽  
Kristina Blennow ◽  
James Ryder ◽  
...  

Abstract. Earth System Models (ESMs) are currently the most advanced tools with which to study the interactions between humans, ecosystem productivity and the climate. The inclusion of storm damage in ESMs has long been hampered by their big-leaf approach which ignores the canopy structure information that is required for process-based wind throw modelling. Recently the big-leaf assumptions in the large scale land surface model ORCHIDEE-CAN were replaced by a three dimensional description of the canopy structure. This opened the way to the integration of the processes from the small-scale wind damage risk model ForestGALES into ORCHIDEE-CAN. The resulting enhanced model was completed by an empirical function to convert the difference between actual and critical wind speeds into forest damage. This new version of ORCHIDEE-CAN was parametrized over Sweden. Subsequently, the performance of the model was tested against data for historical storms in Southern Sweden between 1951 and 2010, and South-western France in 2009. In years without big storms, here defined as a storm damaging less than 15 × 106 m3 of wood in Sweden, the model error is 1.62 × 106 m3 which is about 100 % of the observed damage. For years with big storms, such as Gudrun in 2005, the model error increased to 5.05 × 106 m3 which is between 10 % and 50 % of the observed damage. When the same model parameters were used over France, the model reproduced a decrease in leaf area index and an increase in albedo, in accordance with SPOT-VGT and MODIS records following the passing of Cyclone Klaus in 2009. The current version of ORCHIDEE-CAN (revision 4262) is therefore expected to have the capability to capture the dynamics of forest structure due to storm disturbance both at regional and global scales, although the empirical parameters calculating gustiness from the gridded wind fields and storm damage from critical wind speeds may benefit from regional fitting.


2019 ◽  
Author(s):  
Elias C. Massoud ◽  
Chonggang Xu ◽  
Rosie Fisher ◽  
Ryan Knox ◽  
Anthony Walker ◽  
...  

Abstract. Vegetation plays a key role in regulating global carbon cycles and is a key component of the Earth System Models (ESMs) aimed to project Earth's future climates. In the last decade, the vegetation component within ESMs has witnessed great progresses from simple 'big-leaf' approaches to demographically-structured approaches, which has a better representation of plant size, canopy structure, and disturbances. The demographically-structured vegetation models are typically controlled by a large number of parameters, and sensitivity analysis is generally needed to quantify the impact of each parameter on the model outputs for a better understanding of model behaviors. In this study, we use the Fourier Amplitude Sensitivity Test (FAST) to diagnose the Community Land Model coupled to the Ecosystem Demography Model, or CLM4.5(ED). We investigate the first and second order sensitivities of the model parameters to outputs that represent simulated growth and mortality as well as carbon fluxes and stocks. While the photosynthetic capacity parameter Vc,max25 is found to be important for simulated carbon stocks and fluxes, we also show the importance of carbon storage and allometry parameters, which are shown here to determine vegetation demography and carbon stocks through their impacts on survival and growth strategies. The results of this study highlights the importance of understanding the dynamics of the next generation of demographically-enabled vegetation models within ESMs toward improved model parameterization and model structure for better model fidelity.


2008 ◽  
Vol 9 (4) ◽  
pp. 601-621 ◽  
Author(s):  
David B. Radell ◽  
Clinton M. Rowe

Abstract In this study, the influence of subsurface water on the energy budget components of three locations with heterogeneous land surfaces in the Nebraska Sand Hills are examined through observations and use of the Noah land surface model (LSM). Observations of the four primary components of the surface energy budget are compared for a wet interdunal meadow valley, a dry interdunal valley, and a dunal upland location. With similar atmospheric forcing at each site, it was determined that differences in the partitioning of the mean diurnal net radiation (Rnet) existed among the three locations due to the influence of varied soil moisture and vegetation through the year. At the wet valley, observations indicated that almost 65% of the mean daily peak Rnet was used for latent heating, due to the relatively higher soil moisture content resulting from an annual upward gradient of subsurface water and denser vegetation. In sharp contrast, the dunal upland site yielded only 21% of the mean daily peak Rnet going to latent heating, and a greater mean diurnal soil heat flux with typically drier soils and sparser vegetation than at the wet valley. The dry valley partition of the peak Rnet fell between the wet valley and dunal upland site, with approximately 50% going to sensible heating and 50% toward latent heating. In addition to the observational analysis, an uncoupled land surface model was forced with the observations from each site to simulate the energy budgets, with no tuning of the model’s fundamental equations and with little adjustment of the model parameters to improve results. While the model was able to reasonably simulate the mean diurnal and annual energy budget components at all locations, in most instances with root-mean-square errors within 20%–25% of the observed values, the lack of explicit treatment of subsurface water within the model limited predictability, particularly at the wet valley site. For instance, only 25% of the peak mean diurnal Rnet went toward latent heating in the model simulation of the wet valley, compared to 65% as estimated by observations. Model evaluation statistics are presented to document the land surface model’s ability to capture the annual and mean diurnal variations in the surface energy budget terms at the dry valley and dunal upland sites, but the absence of subsurface water results in large errors in the wet valley simulation. From these results, a case is made for the future inclusion of the explicit treatment of subsurface water within the Noah LSM to better approximate the prediction of the surface energy budget in such environments.


Sign in / Sign up

Export Citation Format

Share Document