scholarly journals Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

2015 ◽  
Vol 8 (2) ◽  
pp. 2053-2100 ◽  
Author(s):  
S. Garrigues ◽  
A. Olioso ◽  
D. Carrer ◽  
B. Decharme ◽  
E. Martin ◽  
...  

Abstract. Generic land surface models are generally driven by large-scale forcing datasets to describe the climate, the surface characteristics (soil texture, vegetation dynamic) and the cropland management (irrigation). This paper investigates the errors in these forcing variables and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12 year Mediterranean crop succession. We evaluate the forcing datasets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN high spatial resolution atmospheric reanalysis, the Leaf Area Index (LAI) cycles derived from the Ecoclimap-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional datasets which includes the ERA-Interim low spatial resolution reanalysis, the Global Precipitation Climatology Centre dataset (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The methodology consists in comparing the simulation achieved using large-scale forcing datasets with the simulation achieved using local observations for each forcing variable. The relative impacts of the forcing variables on simulated ET are compared with each other and with the model uncertainties triggered by errors in soil parameters. LAI and the lack of irrigation in the simulation generate the largest mean deviations in ET between the large-scale and the local-scale simulations (equivalent to 24 and 19 months of ET over 12 yr). The climate induces smaller mean deviations equivalent to 7–8 months of ET over 12 yr. The soil texture has the lowest impact (equivalent to 3 months of ET). However, the impact of errors in the forcing variables is smaller than the impact triggered by errors in the soil parameters (equivalent to 27 months of ET). The absence of irrigation which represents 18% of cumulative rainfall over 12 years induces a deficit in ET of 14%. It generates much larger variations in incoming water for the model than the differences in rainfall between the reanalysis datasets. ET simulated with the Ecoclimap-II LAI climatology is overestimated by 18% over 12 years. This is related to the overestimation of the mean LAI over the crop cycle which reveals inaccurate representation of Mediterranean crop cycles. Compared to SAFRAN, the use of the ERA-I reanalysis, the GPCC rainfall and the downwelling shortwave radiation derived from the MSG satellite have little influence on the ET simulation performances. The error in yearly ET is mainly driven by the error in yearly rainfall and to a less extent by radiations. The SAFRAN and MSG satellite shortwave radiation estimates show similar negative biases (−9 and −11 W m−2). The ERA-I bias in shortwave radiations is 4 times smaller at daily time scale. Both SAFRAN and ERA-I underestimate longwave downwelling radiations by −12 and −16 W m−2, respectively. The biases in shortwave and longwave radiations show larger inter-annual variation for SAFRAN than for ERA-I. Regarding rainfall, SAFRAN and ERA-I/GPCC are slightly biased at daily and longer time scales (1 and 0.5% of the mean rainfall measurement). The SAFRAN rainfall estimates are more precise due to the use of the in situ daily rainfall measurements of the Avignon site in the reanalysis.

2015 ◽  
Vol 8 (10) ◽  
pp. 3033-3053 ◽  
Author(s):  
S. Garrigues ◽  
A. Olioso ◽  
D. Carrer ◽  
B. Decharme ◽  
J.-C. Calvet ◽  
...  

Abstract. Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m−2) compared to the negative biases found for SAFRAN (−10 W m−2) and the MSG satellite (−12 W m−2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by −12 and −16 W m−2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The simulation of irrigation by the model provides an accurate irrigation amount over the crop cycle but the timing of irrigation occurrences is frequently unrealistic. Errors in the soil hydrodynamic parameters and the lack of irrigation in the simulation have the largest influence on ET compared to uncertainties in the large-scale climate reanalysis and the LAI climatology. Among climate variables, the errors in yearly ET are mainly related to the errors in yearly rainfall. The underestimation of the available water capacity and the soil hydraulic diffusivity induce a large underestimation of ET over 12 years. The underestimation of radiations by the reanalyses and the absence of irrigation in the simulation lead to the underestimation of ET while the overall overestimation of LAI by the ECOCLIMAP-II climatology induces an overestimation of ET over 12 years. This work shows that the key challenges to monitor the water balance of cropland at regional scale concern the representation of the spatial distribution of the soil hydrodynamic parameters, the variability of the irrigation practices, the seasonal and inter-annual dynamics of vegetation and the spatiotemporal heterogeneity of rainfall.


2019 ◽  
Author(s):  
Salma Tafasca ◽  
Agnès Ducharne ◽  
Christian Valentin

Abstract. Soil physical properties play an important role for estimating soil water and energy fluxes. Many hydrological and land surface models (LSMs) use soil texture maps to infer these properties. Here, we investigate the impact of soil texture on soil water fluxes and storage at global scale using the ORCHIDEE LSM, forced by several complex or globally-uniform soil texture maps. The model shows a realistic sensitivity of runoff processes and soil moisture to soil texture, and reveals that medium textures give the highest evapotranspiration and lowest total runoff rates. The three tested complex soil texture maps being rather similar by construction, especially when upscaled at the 0.5° resolution used here, they result in similar water budgets at all scales, compared to the uncertainties of observation-based products and meteorological forcing datasets. A useful outcome is that the choice of the input soil texture map is not crucial for large-scale modelling. The added-value of more detailed soil information (horizontal and vertical resolution, soil composition) deserves further studies.


2020 ◽  
Vol 24 (7) ◽  
pp. 3753-3774
Author(s):  
Salma Tafasca ◽  
Agnès Ducharne ◽  
Christian Valentin

Abstract. Soil physical properties play an important role in estimating soil water and energy fluxes. Many hydrological and land surface models (LSMs) use soil texture maps to infer these properties. Here, we investigate the impact of soil texture on soil water fluxes and storage at different scales using the ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) LSM, forced by several complex or globally uniform soil texture maps. At the point scale, the model shows a realistic sensitivity of runoff processes and soil moisture to soil texture and reveals that loamy textures give the highest evapotranspiration and lowest total runoff rates. The three tested complex soil texture maps result in similar water budgets at all scales, compared to the uncertainties of observation-based products and meteorological forcing datasets, although important differences can be found at the regional scale, particularly in areas where the different maps disagree on the prevalence of clay soils. The three tested soil texture maps are also found to be similar by construction, with a shared prevalence of loamy textures, and have a spatial overlap over 40 % between each pair of maps, which explains the overall weak impact of soil texture map change. A useful outcome is that the choice of the input soil texture map is not crucial for large-scale modelling, but the added value of more detailed soil information (horizontal and vertical resolution, soil composition) deserves further studies.


2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2006 ◽  
Vol 7 (1) ◽  
pp. 61-80 ◽  
Author(s):  
B. Decharme ◽  
H. Douville ◽  
A. Boone ◽  
F. Habets ◽  
J. Noilhan

Abstract This study focuses on the influence of an exponential profile of saturated hydraulic conductivity, ksat, with soil depth on the water budget simulated by the Interaction Soil Biosphere Atmosphere (ISBA) land surface model over the French Rhône River basin. With this exponential profile, the saturated hydraulic conductivity at the surface increases by approximately a factor of 10, and its mean value increases in the root zone and decreases in the deeper region of the soil in comparison with the values given by Clapp and Hornberger. This new version of ISBA is compared to the original version in offline simulations using the Rhône-Aggregation high-resolution database. Low-resolution simulations, where all atmospheric data and surface parameters have been aggregated, are also performed to test the impact of the modified ksat profile at the typical scale of a climate model. The simulated discharges are compared to observations from a dense network consisting of 88 gauging stations. Results of the high-resolution experiments show that the exponential profile of ksat globally improves the simulated discharges and that the assumption of an increase in saturated hydraulic conductivity from the soil surface to a depth close to the rooting depth in comparison with values given by Clapp and Hornberger is reasonable. Results of the scaling experiments indicate that this parameterization is also suitable for large-scale hydrological applications. Nevertheless, low-resolution simulations with both model versions overestimate evapotranspiration (especially from the plant transpiration and the wet fraction of the canopy) to the detriment of total runoff, which emphasizes the need for implementing subgrid distribution of precipitation and land surface properties in large-scale hydrological applications.


2020 ◽  
Author(s):  
Amol Patil ◽  
Benjamin Fersch ◽  
Harrie-Jan Hendricks-Franssen ◽  
Harald Kunstmann

<p>Soil moisture is a key variable in atmospheric modelling to resolve the partitioning of net radiation into sensible and latent heat fluxes. Therefore, high resolution spatio-temporal soil moisture estimation is getting growing attention in this decade. The recent developments to observe soil moisture at field scale (170 to 250 m spatial resolution) using Cosmic Ray Neutron Sensing (CRNS) technique has created new opportunities to better resolve land surface atmospheric interactions; however, many challenges remain such as spatial resolution mismatch and estimation uncertainties. Our study couples the Noah-MP land surface model to the Data Assimilation Research Testbed (DART) for assimilating CRN intensities to update model soil moisture. For evaluation, the spatially distributed Noah-MP was set up to simulate the land surface variables at 1 km horizontal resolution for the Rott and Ammer catchments in southern Germany. The study site comprises the TERENO-preAlpine observatory with five CRNS stations and additional CRNS measurements for summer 2019 operated by our Cosmic Sense research group. We adjusted the soil parametrization in Noah-MP to allow the usage of EU soil data along with Mualem-van Genuchten soil hydraulic parameters. We use independent observations from extensive soil moisture sensor network (SoilNet) within the vicinity of CRNS sensors for validation. Our detailed synthetic and real data experiments are evaluated for the analysis of the spatio-temporal changes in updated root zone soil moisture and for implications on the energy balance component of Noah-MP. Furthermore, we present possibilities to estimate root zone soil parameters within the data assimilation framework to enhance standalone model performance.</p>


2020 ◽  
Author(s):  
Ling Yuan ◽  
Yaoming Ma ◽  
Xuelong Chen

<p>Evapotranspiration (ET), composed of evaporation (ETs) and transpiration (ETc) and intercept water (ETw), plays an indispensable role in the water cycle and energy balance of land surface processes. A more accurate estimation of ET variations is essential for natural hazard monitoring and water resource management. For the cold, arid, and semi-arid regions of the Tibetan Plateau (TP), previous studies often overlooked the decisive role of soil properties in ETs rates. In this paper, an improved algorithm for ETs in bare soil and an optimized parameter for ETc over meadow based on MOD16 model are proposed for the TP. The nonlinear relationship between surface evaporation resistance (r<sub>s</sub><sup>s</sup>) and soil surface hydration state in different soil texture is redefined by ground-based measurements over the TP. Wind speed and vegetation height were integrated to estimate aerodynamic resistance by Yang et al. (2008). The validated value of the mean potential stomatal conductance per unit leaf area (C<sub>L</sub>) is 0.0038m s<sup>-1</sup>. And the algorithm was then compared with the original MOD16 algorithm and a soil water index–based Priestley-Taylor algorithm (SWI–PT). After examining the performance of the three models at 5 grass flux tower sites in different soil texture over the TP, East Asia, and America, the validation results showed that the half-hour estimates from the improved-MOD16 were closer to observations than those of the other models under the all-weather in each site. The average correlation coefficient(R<sup>2</sup>) of the improved-MOD16 model was 0.83, compared with 0.75 in the original MOD16 model and 0.78 in SWI-PT model. The average values of the root mean square error (RMSE) are 35.77W m<sup>-2</sup>, 79.46 W m<sup>-2</sup>, and 73.88W m<sup>-2</sup> respectively. The average values of the mean bias (MB) are -4.08W m<sup>-2</sup>, -52.36W m<sup>-2</sup>, and -11.74 W m<sup>-2</sup> overall sites, respectively. The performance of these algorithms are better achieved on daily (R<sup>2</sup>=0.81, RMSE=17.22W m<sup>-2</sup>, MB=-4.12W m<sup>-2</sup>; R<sup>2</sup>=0.64, RMSE=56.55W m<sup>-2</sup>, MB=-48.74W m<sup>-2</sup>; R2=0.78, RMSE=22.3W m<sup>-2</sup>, MB=-9.82W m<sup>-2</sup>) and monthly (R2=0.93, RMSE=23.35W m<sup>-2</sup>, MB=-2.8W m<sup>-2</sup>; R2=0.86, RMSE=69.11W m<sup>-2</sup>, MB=-39.5W m<sup>-2</sup>; R2=0.79, RMSE=62.8W m<sup>-2</sup>, MB=-9.7W m<sup>-2</sup>) scales. Overall, the results showed that the newly developed MOD16 model captured ET more accurately than the other two models. The comparisons between the modified algorithm and two mainstream methods suggested that the modified algorithm could produce high accuracy ET over the meadow sites and has great potential for land surface model improvements and remote sensing ET promotion for the ET region.</p>


2016 ◽  
Vol 17 (12) ◽  
pp. 2981-2995 ◽  
Author(s):  
Alex Mahalov ◽  
Jialun Li ◽  
Peter Hyde

Abstract In this study, the impacts of Mexican and southwestern U.S. agricultural and urban irrigation on North American monsoon (NAM) rainfall and other hydrometeorological fields are investigated using the Weather Research and Forecasting (WRF) Model by implementing an irrigation scheme into the WRF–land surface model. Taking the 2000–12 monsoon seasons as examples, multiple WRF simulations with irrigation are conducted by designing different crops’ maximum allowable water depletions (SWm). In comparison with gridded rainfall observations in urban and rural area, the WRF simulations with/without irrigation generally capture the observations very well, but with underestimation along the western slope of the Sierra Madre Occidental (SMO) and overestimation over southern Mexico. The simulations of WRF with irrigation are slightly improved over those without irrigation, compared with rainfall and sounding observations. Sensitivity studies reveal that the impact of irrigation on rainfall varies with location and NAM rainfall variability. Irrigation increases rainfall in eastern Arizona–western New Mexico and in northwestern Mexico because of the irrigation-induced increases of convective available potential energy (CAPE) and precipitable water. Overall, irrigation decreases rainfall in western Arizona, along the western slope of the SMO, and in central Mexico because of irrigation-induced increases of convective inhibition (CIN), decreases of CAPE, and/or large-scale water vapor divergence.


2020 ◽  
Author(s):  
Noemi Vergopolan ◽  
Nathaniel W. Chaney ◽  
Hylke E. Beck ◽  
Ming Pan ◽  
Justin Sheffield ◽  
...  

<p>Accurate and detailed soil moisture information is essential for, among other things, irrigation, drought and flood prediction, water resources management, and field-scale (i.e., tens of m) decision making. Microwave-based satellite remote sensing offers unique opportunities for the large-scale monitoring of soil moisture at frequent temporal intervals. However, the utility of these satellite products is limited by the large footprint of the microwave sensors. Several downscaling techniques based on high-resolution remotely sensed data proxies have been proposed (1 km to 100 m). Although these techniques yield aesthetically pleasing maps, by neglecting how the water and energy fluxes physically interact with the landscape, these approaches often fail to provide soil moisture estimates that are hydrologically consistent.</p><p>This work introduces a state-of-the-art framework that combines a process-based hyper-resolution land surface model (LSM), a radiative transfer model (RTM), and a Bayesian scheme to merge and downscale coarse resolution brightness temperature to a 30-m spatial resolution. The framework is based on HydroBlocks, an LSM that solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs). We demonstrate this framework by coupling HydroBlocks with the Tau-Omega RTM used in the Soil Moisture Active Passive (SMAP) mission and subsequently merging the HydroBlocks-RTM and the SMAP L3-enhanced brightness temperature at the HRU scale. This allows for hydrologically consistent SMAP-based soil moisture retrievals at an unprecedented 30-m spatial resolution over continental domains. </p><p>We applied this framework to obtain 30-m SMAP-based soil moisture retrievals over the contiguous United States (2015-2018). When evaluated against sparse and dense in-situ soil moisture networks, the 30-m soil moisture retrievals showed substantial improvements in performance at field and watershed scales, outperforming both the SMAP L3-enhanced and the SMAP L4 soil moisture products. This work leads the way towards hydrologically consistent field-scale soil moisture retrievals and highlights the value of hyper-resolution modeling to bridge the gap between coarse-scale satellite retrievals and field-scale hydrological applications. </p>


Sign in / Sign up

Export Citation Format

Share Document