scholarly journals Development of Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled Model

2015 ◽  
Vol 8 (3) ◽  
pp. 2529-2554 ◽  
Author(s):  
J. G. L. Rae ◽  
H. T. Hewitt ◽  
A. B. Keen ◽  
J. K. Ridley ◽  
A. E. West ◽  
...  

Abstract. The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.

2015 ◽  
Vol 8 (7) ◽  
pp. 2221-2230 ◽  
Author(s):  
J. G. L. Rae ◽  
H. T. Hewitt ◽  
A. B. Keen ◽  
J. K. Ridley ◽  
A. E. West ◽  
...  

Abstract. The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.


2015 ◽  
Vol 56 (69) ◽  
pp. 18-28 ◽  
Author(s):  
Ian Simmonds

AbstractWe examine the evolution of sea-ice extent (SIE) over both polar regions for 35 years from November 1978 to December 2013, as well as for the global total ice (Arctic plus Antarctic). Our examination confirms the ongoing loss of Arctic sea ice, and we find significant (p˂ 0.001) negative trends in all months, seasons and in the annual mean. The greatest rate of decrease occurs in September, and corresponds to a loss of 3 x 106 km2 over 35 years. The Antarctic shows positive trends in all seasons and for the annual mean (p˂0.01), with summer attaining a reduced significance (p˂0.10). Based on our longer record (which includes the remarkable year 2013) the positive Antarctic ice trends can no longer be considered ‘small’, and the positive trend in the annual mean of (15.29 ± 3.85) x 103 km2 a–1 is almost one-third of the magnitude of the Arctic annual mean decrease. The global annual mean SIE series exhibits a trend of (–35.29 ± 5.75) x 103 km2 a-1 (p<0.01). Finally we offer some thoughts as to why the SIE trends in the Coupled Model Intercomparison Phase 5 (CMIP5) simulations differ from the observed Antarctic increases.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2012 ◽  
Vol 6 (6) ◽  
pp. 1383-1394 ◽  
Author(s):  
F. Massonnet ◽  
T. Fichefet ◽  
H. Goosse ◽  
C. M. Bitz ◽  
G. Philippon-Berthier ◽  
...  

Abstract. We examine the recent (1979–2010) and future (2011–2100) characteristics of the summer Arctic sea ice cover as simulated by 29 Earth system and general circulation models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). As was the case with CMIP3, a large intermodel spread persists in the simulated summer sea ice losses over the 21st century for a given forcing scenario. The 1979–2010 sea ice extent, thickness distribution and volume characteristics of each CMIP5 model are discussed as potential constraints on the September sea ice extent (SSIE) projections. Our results suggest first that the future changes in SSIE with respect to the 1979–2010 model SSIE are related in a complicated manner to the initial 1979–2010 sea ice model characteristics, due to the large diversity of the CMIP5 population: at a given time, some models are in an ice-free state while others are still on the track of ice loss. However, in phase plane plots (that do not consider the time as an independent variable), we show that the transition towards ice-free conditions is actually occurring in a very similar manner for all models. We also find that the year at which SSIE drops below a certain threshold is likely to be constrained by the present-day sea ice properties. In a second step, using several adequate 1979–2010 sea ice metrics, we effectively reduce the uncertainty as to when the Arctic could become nearly ice-free in summertime, the interval [2041, 2060] being our best estimate for a high climate forcing scenario.


2015 ◽  
Vol 9 (1) ◽  
pp. 399-409 ◽  
Author(s):  
Q. Shu ◽  
Z. Song ◽  
F. Qiao

Abstract. The historical simulations of sea ice during 1979 to 2005 by the Coupled Model Intercomparison Project Phase 5 (CMIP5) are compared with satellite observations, Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output data and Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) output data in this study. Forty-nine models, almost all of the CMIP5 climate models and earth system models with historical simulation, are used. For the Antarctic, multi-model ensemble mean (MME) results can give good climatology of sea ice extent (SIE), but the linear trend is incorrect. The linear trend of satellite-observed Antarctic SIE is 1.29 (±0.57) × 105 km2 decade−1; only about 1/7 CMIP5 models show increasing trends, and the linear trend of CMIP5 MME is negative with the value of −3.36 (±0.15) × 105 km2 decade−1. For the Arctic, both climatology and linear trend are better reproduced. Sea ice volume (SIV) is also evaluated in this study, and this is a first attempt to evaluate the SIV in all CMIP5 models. Compared with the GIOMAS and PIOMAS data, the SIV values in both the Antarctic and the Arctic are too small, especially for the Antarctic in spring and winter. The GIOMAS Antarctic SIV in September is 19.1 × 103 km3, while the corresponding Antarctic SIV of CMIP5 MME is 13.0 × 103 km3 (almost 32% less). The Arctic SIV of CMIP5 in April is 27.1 × 103 km3, which is also less than that from PIOMAS SIV (29.5 × 103 km3). This means that the sea ice thickness simulated in CMIP5 is too thin, although the SIE is fairly well simulated.


2012 ◽  
Vol 6 (4) ◽  
pp. 2931-2959 ◽  
Author(s):  
F. Massonnet ◽  
T. Fichefet ◽  
H. Goosse ◽  
C. M. Bitz ◽  
G. Philippon-Berthier ◽  
...  

Abstract. We examine the recent (1979–2010) and future (2011–2100) characteristics of the summer Arctic sea ice cover as simulated by 29 Earth system and general circulation models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). As was the case with CMIP3, a large inter-model spread persists in the simulated summer sea ice losses over the 21st century for a given forcing scenario. The initial 1979–2010 sea ice properties (including the sea ice extent, thickness distribution and volume characteristics) of each CMIP5 model are discussed as potential constraints on the September sea ice extent (SSIE) projections. Our results suggest first that the SSIE anomalies (compared to the 1979–2010 model SSIE) are related in a complicated manner to the initial 1979–2010 sea ice model characteristics, due to the large diversity of the CMIP5 population (at a given time, some models are in an ice-free state while others are still on the track of ice loss). In a new diagram (that does not consider the time as an independent variable) we show that the transition towards ice-free conditions is actually occuring in a very similar manner for all models. For these reasons, some quantities that do not explicitly depend on time, such as the year at which SSIE drops below a certain threshold, are likely to be constrained. In a second step, using several adequate 1979–2010 sea ice metrics, we effectively reduce the uncertainty as to when the Arctic could become nearly ice-free in summertime (between 2041 and 2060 for a high climate forcing scenario).


2021 ◽  
Vol 15 (12) ◽  
pp. 5473-5482
Author(s):  
Jinlei Chen ◽  
Shichang Kang ◽  
Wentao Du ◽  
Junming Guo ◽  
Min Xu ◽  
...  

Abstract. The retreat of sea ice has been found to be very significant in the Arctic under global warming. It is projected to continue and will have great impacts on navigation. Perspectives on the changes in sea ice and navigability are crucial to the circulation pattern and future of the Arctic. In this investigation, the decadal changes in sea ice parameters were evaluated by the multi-model from the Coupled Model Inter-comparison Project Phase 6, and Arctic navigability was assessed under two shared socioeconomic pathways (SSPs) and two vessel classes with the Arctic transportation accessibility model. The sea ice extent shows a high possibility of decreasing along SSP5-8.5 under current emissions and climate change. The decadal rate of decreasing sea ice extent will increase in March but decrease in September until 2060, when the oldest ice will have completely disappeared and the sea ice will reach an irreversible tipping point. Sea ice thickness is expected to decrease and transit in certain parts, declining by −0.22 m per decade after September 2060. Both the sea ice concentration and volume will thoroughly decline at decreasing decadal rates, with a greater decrease in volume in March than in September. Open water ships will be able to cross the Northern Sea Route and Northwest Passage between August and October during the period from 2045 to 2055, with a maximum navigable percentage in September. The time for Polar Class 6 (PC6) ships will shift to October–December during the period from 2021 to 2030, with a maximum navigable percentage in October. In addition, the central passage will be open for PC6 ships between September and October during 2021–2030.


2019 ◽  
Vol 59 (2) ◽  
pp. 213-221 ◽  
Author(s):  
G. V. Alekseev ◽  
N. I. Glok ◽  
A. E. Vyasilova ◽  
N. E. Ivanov ◽  
N. E. Kharlanenkova ◽  
...  

Sea ice fields in the Antarctic, in contrast to the Arctic ones, did not show a reduction in observed global warming, whereas the global climate models indicate its certain decrease. The purpose of the study is to explain this climatic phenomenon on the basis of the idea of joint dynamics of oceanic structures in the Southern Ocean – the Antarctic polar front and the margin of the maximum distribution of sea ice. We used data from the ERA/Interim and HadISST as well as the database on the sea ice for 1979–2017. Relationship between the SST-anomalies in low latitudes of the Northern hemisphere and positions of the Antarctic polar front and maximum sea-ice extent was investigated. It was found that locations of these structures changed under the influence of the SST anomalies in low latitudes. The results obtained confirm existence of the opposite trends in changes in the sea ice extent in the Arctic and Antarctic under the influence of the SST anomalies in the central North Atlantic Ocean. When positive, the anomalies cause a shift of the Intertropical Convergence Zone (ITCZ) and the Hadley circulation to the North, while, on the contrary, the negative anomaly promotes the corresponding shift of the Antarctic polar front, followed by the boundary of sea ice.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 609-616
Author(s):  
AMITA PRABHU ◽  
P.N. MAHAJAN ◽  
R.M. KHALADKAR

The development in the satellite microwave technology during the past three decades has offered an opportunity to the scientific community to access the sea ice data over the polar regions, which was otherwise inaccessible for continuous monitoring by any other means. The present study focuses on the trends in the Sea Ice Extent (SIE) over different sectors of the Arctic and the Antarctic regions and the interannual variability in their extremes. In general, the data over the period (1979-2007) reveal marked interannual variability in the sea ice cover with an increasing and the decreasing trend over the Antarctic and the Arctic region respectively. Over the southern hemisphere, only the Bellingshausen and Amundsen Seas sector shows an exceptional decreasing trend. However, in the northern hemisphere, all the sectors show a decreasing trend, with the Kara and Barents Seas sector being the most prominent one. Although, the decreasing trend of the SIE over the Arctic could be attributed to the global warming, an intriguing question still remains as to why the other polar region shows a different behaviour.


1990 ◽  
Vol 14 ◽  
pp. 339-339
Author(s):  
W.D Hibler ◽  
Peter Ranelli

Sea-ice drift and dynamics can significantly affect the exchanges of heat between the atmosphere and ocean and salt fluxes into the ocean. The ice drift and dynamics, in turn, can be modified by the ocean circulation. This is especially true of the ice margin location whose seasonal characteristics are largely controlled by the substantial oceanic heat flux in the Greenland Sea due to convective overturning.A useful framework to analyze the interannual variability of ice–ocean interaction effects relevant to climatic change is the diagnostic ice–ocean model developed by Hibler and Bryan (1987). In this model, the oceanic temperature and salinity is weakly relaxed (except in the upper layer of the ocean which is essentially driven by the ice dynamic-thermodynamic sea-ice model) to climatological temperature and salinity data. This procedure allows seasonal and interannual variability to be simulated while still preventing the baroclinic characteristics of the ocean circulation from gradually drifting off into a total model defined state. However, in the work of Hibler and Bryan only the seasonal equilibrium characteristics of this model with the same forcing repeated year after year have been considered.In order to begin to examine the interannual behavior of this model, we have carried out a three-year simulation for the Arctic Greenland and Norwegian seas over the time period 1981–83. (The geographical region is essentially the same as used by Hibler and Bryan.) This three year simulation is carried out after an initial two year spin up using the 1981 atmospheric forcing data. For comparison purposes, an ice model simulation with only a fixed depth mixed layer was also carried out over this time interval.The results of these two simulations are analyzed with special attention to the ice margin characteristics in the Greenland and Norwegian seas to determine the role of ocean circulation on the variability there. The ice margin results are also compared to the variability in the northward transports of heat through the Faero-Shetland passage which in the fully-coupled model are calculated rather than specified.


Sign in / Sign up

Export Citation Format

Share Document