scholarly journals Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model

2015 ◽  
Vol 8 (7) ◽  
pp. 2221-2230 ◽  
Author(s):  
J. G. L. Rae ◽  
H. T. Hewitt ◽  
A. B. Keen ◽  
J. K. Ridley ◽  
A. E. West ◽  
...  

Abstract. The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.

2015 ◽  
Vol 8 (3) ◽  
pp. 2529-2554 ◽  
Author(s):  
J. G. L. Rae ◽  
H. T. Hewitt ◽  
A. B. Keen ◽  
J. K. Ridley ◽  
A. E. West ◽  
...  

Abstract. The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.


2019 ◽  
Author(s):  
Stefan Kern ◽  
Thomas Lavergne ◽  
Dirk Notz ◽  
Leif Toudal Pedersen ◽  
Rasmus Tage Tonboe ◽  
...  

Abstract. Accurate sea-ice concentration (SIC) data are a pre-requisite to reliably monitor the polar sea-ice covers. Over the last four decades, many algorithms have been developed to retrieve the SIC from satellite microwave radiometry, some of them applied to generate long-term data products. We report on results of a systematic inter-comparison of ten global SIC data products at 12.5 to 50.0 km grid resolution for both the Arctic and the Antarctic. The products are compared with each other with respect to differences in SIC, sea-ice area (SIA), and sea-ice extent (SIE), and they are compared against a global winter-time near-100 % reference SIC data set for closed pack ice conditions and against global year-round ship-based visual observations of the sea-ice cover. We can group the products based on the observed inter-product consistency and differences of the inter-comparison results. Group I consists of data sets using the self-optimizing EUMETSAT-OSISAF – ESA-CCI algorithms. Group II includes data using the NASA-Team 2 and Comiso-Bootstrap algorithms, and the NOAA-NSIDC sea-ice concentration climate data record (CDR). The standard NASA-Team and the ARTIST Sea Ice (ASI) algorithms are put into a separate group III because of their often quite diverse results. Within group I and II evaluation results and intra-product differences are mostly very similar. For instance, among group I products, SIA agrees within ±100 000 km2 in both hemispheres during maximum and minimum sea-ice cover. Among group II products, satellite- minus ship-based SIC differences agree within ±0.7 %. Standing out with large negative differences to other products and evaluation data is the standard NASA-Team algorithm, in both hemispheres. The three CDRs of group I (SICCI-25km, SICCI-50km, and OSI-450) are biased low compared to the 100 % reference SIC with biases of −0.4 % to −1.0 % (Arctic) and −0.3 % to −1.1 % (Antarctic). Products of group II appear to be mostly biased high in the Arctic by between +1.0 % and +3.5 %, while their biases in the Antarctic only range from −0.2  to +0.9 %. The standard deviation is smaller in the Arctic for the quoted group I products: 1.9 % to 2.9 % and Antarctic: 2.5 % to 3.1 %, than for group II products: Arctic: 3.6 % to 5.0 %, Antarctic: 4.5 % to 5.4 %. Products of group I exhibit larger overall satellite- minus ship-based SIC differences than group II in both hemispheres. However, compared to group II, group I products’ standard deviations are smaller, correlations higher and evaluation results are less sensitive to seasonal changes. We discuss the impact of truncating the SIC distribution, as naturally retrieved by the algorithms around the 100 % sea-ice concentration end. We show that evaluation studies of such truncated SIC products can result in misleading statistics and favour data sets that systematically overestimate SIC. We describe a method to re-construct the un-truncated distribution of SIC before the evaluation is performed. On the basis of this evaluation, we open a discussion about the overestimation of SIC in data products, with far-reaching consequences for, e.g., surface heat-flux estimations in winter. We also document inconsistencies in the behaviour of the weather filters used in products of group II, and suggest advancing studies about the influence of these weather filters on SIA and SIE time-series and their trends.


2014 ◽  
Vol 8 (4) ◽  
pp. 1289-1296 ◽  
Author(s):  
I. Eisenman ◽  
W. N. Meier ◽  
J. R. Norris

Abstract. Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one-third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that much of the increase in the reported trend occurred due to the previously undocumented effect of a change in the way the satellite sea ice observations are processed for the widely used Bootstrap algorithm data set, rather than a physical increase in the rate of ice advance. Specifically, we find that a change in the intercalibration across a 1991 sensor transition when the data set was reprocessed in 2007 caused a substantial change in the long-term trend. Although our analysis does not definitively identify whether this change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current data set or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the data set. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that much of this expansion may be a spurious artifact of an error in the processing of the satellite observations.


2015 ◽  
Vol 56 (69) ◽  
pp. 18-28 ◽  
Author(s):  
Ian Simmonds

AbstractWe examine the evolution of sea-ice extent (SIE) over both polar regions for 35 years from November 1978 to December 2013, as well as for the global total ice (Arctic plus Antarctic). Our examination confirms the ongoing loss of Arctic sea ice, and we find significant (p˂ 0.001) negative trends in all months, seasons and in the annual mean. The greatest rate of decrease occurs in September, and corresponds to a loss of 3 x 106 km2 over 35 years. The Antarctic shows positive trends in all seasons and for the annual mean (p˂0.01), with summer attaining a reduced significance (p˂0.10). Based on our longer record (which includes the remarkable year 2013) the positive Antarctic ice trends can no longer be considered ‘small’, and the positive trend in the annual mean of (15.29 ± 3.85) x 103 km2 a–1 is almost one-third of the magnitude of the Arctic annual mean decrease. The global annual mean SIE series exhibits a trend of (–35.29 ± 5.75) x 103 km2 a-1 (p<0.01). Finally we offer some thoughts as to why the SIE trends in the Coupled Model Intercomparison Phase 5 (CMIP5) simulations differ from the observed Antarctic increases.


2019 ◽  
Vol 13 (12) ◽  
pp. 3261-3307 ◽  
Author(s):  
Stefan Kern ◽  
Thomas Lavergne ◽  
Dirk Notz ◽  
Leif Toudal Pedersen ◽  
Rasmus Tage Tonboe ◽  
...  

Abstract. We report on results of a systematic inter-comparison of 10 global sea-ice concentration (SIC) data products at 12.5 to 50.0 km grid resolution for both the Arctic and the Antarctic. The products are compared with each other with respect to differences in SIC, sea-ice area (SIA), and sea-ice extent (SIE), and they are compared against a global wintertime near-100 % reference SIC data set for closed pack ice conditions and against global year-round ship-based visual observations of the sea-ice cover. We can group the products based on the concept of their SIC retrieval algorithms. Group I consists of data sets using the self-optimizing EUMETSAT OSI SAF and ESA CCI algorithms. Group II includes data using the Comiso bootstrap algorithm and the NOAA NSIDC sea-ice concentration climate data record (CDR). The standard NASA Team and the ARTIST Sea Ice (ASI) algorithms are put into group III, and NASA Team 2 is the only element of group IV. The three CDRs of group I (SICCI-25km, SICCI-50km, and OSI-450) are biased low compared to a 100 % reference SIC data set with biases of −0.4 % to −1.0 % (Arctic) and −0.3 % to −1.1 % (Antarctic). Products of group II appear to be mostly biased high in the Arctic by between +1.0 % and +3.5 %, while their biases in the Antarctic range from −0.2 % to +0.9 %. Group III product biases are different for the Arctic, +0.9 % (NASA Team) and −3.7 % (ASI), but similar for the Antarctic, −5.4 % and −5.6 %, respectively. The standard deviation is smaller in the Arctic for the quoted group I products (1.9 % to 2.9 %) and Antarctic (2.5 % to 3.1 %) than for group II and III products: 3.6 % to 5.0 % for the Arctic and 4.0 % to 6.5 % for the Antarctic. We refer to the paper to understand why we could not give values for group IV here. We discuss the impact of truncating the SIC distribution, as naturally retrieved by the algorithms around the 100 % sea-ice concentration end. We show that evaluation studies of such truncated SIC products can result in misleading statistics and favour data sets that systematically overestimate SIC. We describe a method to reconstruct the non-truncated distribution of SIC before the evaluation is performed. On the basis of this evaluation, we open a discussion about the overestimation of SIC in data products, with far-reaching consequences for surface heat flux estimations in winter. We also document inconsistencies in the behaviour of the weather filters used in products of group II, and we suggest advancing studies about the influence of these weather filters on SIA and SIE time series and their trends.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2012 ◽  
Vol 6 (6) ◽  
pp. 1383-1394 ◽  
Author(s):  
F. Massonnet ◽  
T. Fichefet ◽  
H. Goosse ◽  
C. M. Bitz ◽  
G. Philippon-Berthier ◽  
...  

Abstract. We examine the recent (1979–2010) and future (2011–2100) characteristics of the summer Arctic sea ice cover as simulated by 29 Earth system and general circulation models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). As was the case with CMIP3, a large intermodel spread persists in the simulated summer sea ice losses over the 21st century for a given forcing scenario. The 1979–2010 sea ice extent, thickness distribution and volume characteristics of each CMIP5 model are discussed as potential constraints on the September sea ice extent (SSIE) projections. Our results suggest first that the future changes in SSIE with respect to the 1979–2010 model SSIE are related in a complicated manner to the initial 1979–2010 sea ice model characteristics, due to the large diversity of the CMIP5 population: at a given time, some models are in an ice-free state while others are still on the track of ice loss. However, in phase plane plots (that do not consider the time as an independent variable), we show that the transition towards ice-free conditions is actually occurring in a very similar manner for all models. We also find that the year at which SSIE drops below a certain threshold is likely to be constrained by the present-day sea ice properties. In a second step, using several adequate 1979–2010 sea ice metrics, we effectively reduce the uncertainty as to when the Arctic could become nearly ice-free in summertime, the interval [2041, 2060] being our best estimate for a high climate forcing scenario.


2015 ◽  
Vol 9 (1) ◽  
pp. 399-409 ◽  
Author(s):  
Q. Shu ◽  
Z. Song ◽  
F. Qiao

Abstract. The historical simulations of sea ice during 1979 to 2005 by the Coupled Model Intercomparison Project Phase 5 (CMIP5) are compared with satellite observations, Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output data and Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) output data in this study. Forty-nine models, almost all of the CMIP5 climate models and earth system models with historical simulation, are used. For the Antarctic, multi-model ensemble mean (MME) results can give good climatology of sea ice extent (SIE), but the linear trend is incorrect. The linear trend of satellite-observed Antarctic SIE is 1.29 (±0.57) × 105 km2 decade−1; only about 1/7 CMIP5 models show increasing trends, and the linear trend of CMIP5 MME is negative with the value of −3.36 (±0.15) × 105 km2 decade−1. For the Arctic, both climatology and linear trend are better reproduced. Sea ice volume (SIV) is also evaluated in this study, and this is a first attempt to evaluate the SIV in all CMIP5 models. Compared with the GIOMAS and PIOMAS data, the SIV values in both the Antarctic and the Arctic are too small, especially for the Antarctic in spring and winter. The GIOMAS Antarctic SIV in September is 19.1 × 103 km3, while the corresponding Antarctic SIV of CMIP5 MME is 13.0 × 103 km3 (almost 32% less). The Arctic SIV of CMIP5 in April is 27.1 × 103 km3, which is also less than that from PIOMAS SIV (29.5 × 103 km3). This means that the sea ice thickness simulated in CMIP5 is too thin, although the SIE is fairly well simulated.


2011 ◽  
Vol 29 (7) ◽  
pp. 1317-1330 ◽  
Author(s):  
I. Fiorucci ◽  
G. Muscari ◽  
R. L. de Zafra

Abstract. The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O3, HNO3, CO and N2O at polar and mid-latitudes. Its HNO3 data set shed light on HNO3 annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5° N, 68.8° W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO3 data sets from 1993 South Pole observations to date, in order to produce HNO3 version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100 ± 20 % from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1σ uncertainty on HNO3 v2 mixing ratio vertical profiles depends on altitude and is estimated at ~15 % or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO3 vertical profiles, obtained employing the constrained matrix inversion method, show that v1 and v2 profiles are overall consistent. The main difference is at the HNO3 mixing ratio maximum in the 20–25 km altitude range, which is smaller in v2 than v1 profiles by up to 2 ppbv at mid-latitudes and during the Antarctic fall. This difference suggests a better agreement of GBMS HNO3 v2 profiles with both UARS/ and EOS Aura/MLS HNO3 data than previous v1 profiles.


Author(s):  
Josefino C. Comiso

The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at &minus;3.8&thinsp;% per decade while that of the Antarctic is positive at 1.7&thinsp;% per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.


Sign in / Sign up

Export Citation Format

Share Document