The GRACEFUL project : probing the Earth’s deep interior with satellite observations of the gravity field, magnetic field and earth’s rotation

2020 ◽  
Author(s):  
Julia Pfeffer ◽  
Anny Cazenave ◽  
Mioara Mandea ◽  
Véronique Dehant ◽  
Anne Barnoud

<p><span id="divtagdefaultwrapper" dir="ltr"><span lang="en-US">Convective motions in the Earth’s liquid core are known to  generate temporal variations of the magnetic field and of the length of day. Mass redistribution associated with these motions and exchange of matter with the lower mantle at the core mantle boundary (CMB) may eventually also contribute to the temporal variations of the gravity field, possibly detectable in the data of the GRACE and GRACE Follow On missions. In a pioneering work, Mandea et al., 2012 detected compelling spatio-temporal correlations at interannual time scale between the gravity and magnetic fields measured respectively by the GRACE and CHAMP satellite missions. These correlations were later interpreted by these authors as the results of physico-chemical interactions between the core and the mantle at the CMB. While such mechanisms are plausible, their mere existence, order of magnitude and  time scales remain an open question. Here we present the </span><span lang="en-US"> GRACEFUL project, recently selected by the  "Synergy" programme of the </span><span lang="en-US">European Research Council</span><span lang="en-US">, which objective is to  explore in more detail the previously reported observations described above, in particular the interannual co-variations of the magnetic and gravity fields, as well as their link with deep Earth processes.  This presentation is focussed on the  gravity field component, in particular on the search for the deep Earth signal that we hope to be able to detect i</span><span lang="en-US">n the  GRACE/GRACE FO data,  </span><span lang="en-US">after removing all other contributions due to water mass redistributions  occuring in the surface fluid evelopes, as well as  unrelated solid Earth signals associated with the Glacial Isostatic Adjustment and large earthquakes.</span></span></p>

2020 ◽  
Author(s):  
Mioara Mandea ◽  
Veronique Dehant ◽  
Anny Cazenave

<div> <p>To understand the processes involved in the deep interior of the Earth and explaining its evolution, in particular the dynamics of the Earth’s fluid iron-rich outer core, only indirect satellite and ground observations are available. They each provide invaluable information about the core flow but are incomplete on their own:</p> <p>-        The time dependent magnetic field, originating mainly within the core, can be used to infer the motions of the fluid at the top of the core on decadal and subdecadal time scales.</p> <p>-        The time dependent gravity field variations that reflect changes in the mass distribution within the Earth and at its surface occur on a broad range of time scales. Decadal and interannual variations include the signature of the flow inside the core, though they are largely dominated by surface contributions related to the global water cycle and climate-driven land ice loss.</p> <p>-        Earth rotation changes (or variations in the length of the day) also occur on these time scales, and are largely related to the core fluid motions through exchange of angular momentum between the core and the mantle at the core-mantle boundary.</p> <p>Here, we present the main activities proposed in the frame of the GRACEFUL ERC project, which aims to combine information about the core deduced from the gravity field, from the magnetic field and from the Earth rotation in synergy, in order to examine in unprecedented depth the dynamical processes occurring inside the core and at the core-mantle boundary.</p> </div>


The westward drift of the non-dipole part of the earth’s magnetic field and of its secular variation is investigated for the period 1907-45 and the uncertainty of the results discussed. It is found that a real drift exists having an angular velocity which is independent of latitude. For the non-dipole field the rate of drift is 0.18 ± 0-015°/year, that for the secular variation is 0.32 ±0-067°/year. The results are confirmed by a study of harmonic analyses made between 1829 and 1945. The drift is explained as a consequence of the dynamo theory of the origin of the earth’s field. This theory required the outer part of the core to rotate less rapidly than the inner part. As a result of electromagnetic forces the solid mantle of the earth is coupled to the core as a whole, and the outer part of the core therefore travels westward relative to the mantle, carrying the minor features of the field with it.


2021 ◽  
Author(s):  
Jérémy Rekier ◽  
Santiago Triana ◽  
Véronique Dehant

<p>Magnetic fields inside planetary objects can influence their rotation. This is true, in particular, of terrestrial objects with a metallic liquid core and a self-sustained dynamo such as the Earth, Mercury, Ganymede, etc. and also, to a lesser extent, of objects that don’t have a dynamo but are embedded in the magnetic field of their parent body like Jupiter’s moon, Io.<br>In these objects, angular momentum is transfered through the electromagnetic torques at the Core-Mantle Boundary (CMB) [1]. In the Earth, these have the potential to produce a strong modulation in the length of day at the decadal and interannual timescales [2]. They also affect the periods and amplitudes of nutation [3] and polar motion [4]. <br>The intensity of these torques depends primarily on the value of the electric conductivity at the base of the mantle, a close study and detailed modelling of their role in planetary rotation can thus teach us a lot about the physical processes taking place near the CMB.</p><p>In the study of the Earth’s length of day variations, the interplay between rotation and the internal magnetic field arrises from the excitation of torsional oscillations inside the Earth’s core [5]. These oscillations are traditionally modelled based on a series of assumptions such as that of Quasi-Geostrophicity (QG) of the flow inside the core [6]. On the other hand, the effect of the magnetic field on nutations and polar motion is traditionally treated as an additional coupling at the CMB [1]. In such model, the core flow is assumed to have a uniform vorticity and its pattern is kept unaffected by the magnetic field. </p><p>In the present work, we follow a different approach based on the study of magneto-inertial waves. When coupled to gravity through the effect of density stratification, these waves are known to play a crucial role in the oscillations of stars known as magneto-gravito-inertial modes [7]. The same kind of coupling inside the Earth’s core gives rise to the so-called MAC waves which are directly and conceptually related to the aforementioned torsional oscillations [8]. </p><p>We present our preliminary results on the computation of magneto-inertial waves in a freely rotating planetary model with a partially conducting mantle. We show how these waves can alter the frequencies of the free rotational modes identified as the Free Core Nutation (FCN) and Chandler Wobble (CW). We analyse how these results compare to those based on the QG hypothesis and how these are modified when viscosity and density stratification are taken into account. </p><p>[1] Dehant, V. et al. Geodesy and Geodynamics 8, 389–395 (2017). doi:10.1016/j.geog.2017.04.005<br>[2] Holme, R. et al. Nature 499, 202–204 (2013). doi:10.1038/nature12282<br>[3] Dumberry, M. et al. Geophys. J. Int. 191, 530–544 (2012). doi:10.1111/j.1365-246X.2012.05625.x<br>[4] Kuang, W. et al. Geod. Geodyn. 10, 356–362 (2019). doi:10.1016/j.geog.2019.06.003<br>[5] Jault, D. et al. Nature 333, 353–356 (1988). doi:10.1038/333353a0<br>[6] Gerick, F. et al. Geophys. Res. Lett. (2020). doi:10.1029/2020gl090803<br>[7] Mathis, S. et al. EAS Publications Series 62 323-362 (2013). doi: 10.1051/eas/1362010<br>[8] Buffett, B. et al. Geophys. J. Int. 204, 1789–1800 (2016). doi:10.1093/gji/ggv552</p>


2021 ◽  
Author(s):  
Basara Miyahara ◽  
Laura Sánchez ◽  
Martin Sehnal

<p>The Global Geodetic Observing System (GGOS) is the contribution of Geodesy to the observation and monitoring of the Earth System. Geodesy is the science of determining and representing the shape of the Earth, its gravity field and its rotation as a function of time. A core element to reach this goal are stable and consistent geodetic reference frames, which provide the fundamental layer for the determination of time-dependent coordinates of points or objects, and for describing the motion of the Earth in space. Traditionally, geodetic reference frames have been used for surveying, mapping, and space-based positioning and navigation. With modern instrumentation and analytical techniques, Geodesy is now capable of detecting time variations ranging from large and secular scales to very small and transient deformations with increasing spatial and temporal resolution, high accuracy, and decreasing latency. GGOS has been working closely with components of International Association of Geodesy (IAG) to provide consistent and openly available observations of the spatial and temporal changes of the shape and gravity field of the Earth, as well as the temporal variations of the Earth’s rotation. These efforts make available a global picture of the surface kinematics of our planet, including the ocean, ice cover, continental water, and land surfaces, as well as estimates of mass anomalies, mass transport, and mass exchange in the System Earth. Surface kinematics and mass transport together are the key to global mass balance determination, and are an important contribution to understanding the energy budget of our planet. In order to play its vital role, GGOS has following missions; a) to provide the observations needed to monitor, map, and understand changes in the Earth’s shape, rotation, and mass distribution, b) to provide the global geodetic frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications, c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. For the mission, GGOS works tighter with components of the IAG, more specifically, IAG Services, IAG Commissions and IAG Inter-Commission Committees. The IAG Services provide the infrastructure and products on which all contributions of GGOS are based, and the IAG Commissions and IAG Inter-Commission Committees provide expertise and support to address key scientific issues within GGOS. Together with the IAG components, GGOS provides the fundamental infrastructure underpinning Earth sciences and their applications.</p>


1958 ◽  
Vol 6 ◽  
pp. 404-419 ◽  
Author(s):  
A. Ehmert

The increase of cosmic radiation on 23 February 1956 by solar radiation exhibited in the first minutes a high peak at European stations that were lying in direct impact zones for particles coming from a narrow angle near the sun, whilst other stations received no radiation for a further time of 10 minutes and more. An hour later all stations in intermediate and high latitudes recorded solar radiation in a distribution as would be expected if this radiation fell into the geomagnetic field in a fairly isotropic distribution. The intensity of the solar component decreased at this time at all stations according to the same hyperbolic law (~t–2).It is shown, that this decreasing law, as well as the increase of the impact zones on the earth, can be understood as the consequence of an interstellar magnetic field in which the particles were running and bent after their ejection from the sun.Considering the bending in the earth's magnetic field, one can estimate the direction of this field from the times of the very beginning of the increase in Japan and at high latitudes. The lines of magnetic force come to the earth from a point with astronomical co-ordinates near 12·00, 30° N. This implies that within the low accuracy they have the direction of the galactic spiral arm in which we live. The field strength comes out to be about 0·7 × 10–6gauss. There is a close agreement with the field, that Fermi and Chandrasekhar have derived from Hiltner's measurements of the polarization of starlight and the strength of which they had estimated to the same order of magnitude.


2018 ◽  
Vol 62 ◽  
pp. 02014
Author(s):  
Liubov Feshchenko

A low-mode geodynamo model is developed, controlled by 6-jet convection in the core of the Earth. The model contains only four modes, representing the fields of temperature, velocity, and two fields of magnetic induction. The magnetic modes was chosen by combining eight magnetic modes of free decay. There are two noise components in the model. In the model, stable regimes of generation of a magnetic field with reversals having a regular character were obtained. These reversals do not cause changes in the convection structure.


Seismic data demonstrate that the density of the liquid core is some 8-10 % less than pure iron. Equations of state of Fe-Si, C, FeS 2 , FeS, KFeS 2 and FeO, over the pressure interval 133-364 GPa and a range of possible core temperatures (3500- 5000 K), can be used to place constraints on the cosmochemically plausible light element constituents of the core (Si, C, S, K and O ). The seismically derived density profile allows from 14 to 20 % Si (by mass) in the outer core. The inclusion of Si, or possibly G (up to 11 %), in the core is possible if the Earth accreted inhomogeneously within a region of the solar nebulae in which a C :0 (atomic) ratio of about 1 existed, compared with a G : O ratio of 0.6 for the present solar photosphere. In contrast, homogeneous accretion permits Si, but not C, to enter the core by means of reduction of silicates to metallic Fe-Si core material during the late stages of the accumulation of the Earth. The data from the equation of state for the iron sulphides allow up to 9-13 % S in the core. This composition would provide the entire Earth with a S:Si ratio in the range 0.14-0.3, comparable with meteoritic and cosmic abundances. Shock-wave data for KFeS 2 give little evidence for an electronic phase change from 4s to 3d orbitals, which has been suggested to occur in K, and allow the Earth to store a cosmic abundance of K in the metallic core.


The magnetic field generated in the core of the Earth is often represented by spherical harmonics of the magnetic potential. It has been found from looking at the equations of spherical harmonics, and from studying the values of the spherical harmonic coefficients derived from data from Magsat, that this is an unsatisfactory way of representing the core field. Harmonics of high degree are characterized by generally shorter wavelength expressions on the surface of the Earth, but also contain very long wavelength features as well. Thus if it is thought that the higher degree harmonics are produced by magnetizations within the crust of the Earth, these magnetizations have to be capable of producing very long wavelength signals. Since it is impossible to produce very long wavelength signals of sufficient amplitude by using crustal magnetizations of reasonable intensity, the separation of core and crustal sources by using spherical harmonics is not ideal. We suggest that a better way is to use radial off-centre dipoles located within the core of the Earth. These have several advantages. Firstly, they can be thought of as modelling real physical current systems within the core of the Earth. Secondly, it can be shown that off-centred dipoles, if located deep within the core, are more effective at removing long wavelength signals of potential or field than can be achieved by using spherical harmonics. The disadvantage is that it is much more difficult to compute the positions and strengths of the off-centred dipole fields, and much less easy to manipulate their effects (such as upward and downward continuation). But we believe, along with Cox and Alldredge & Hurwitz, that the understanding that we might obtain of the Earth’s magnetic field by using physically reasonable models rather than mathematically convenient models is very important. We discuss some of the radial dipole models that have been proposed for the nondipole portion of the Earth’s field to arrive at a model that agrees with observations of secular variation and excursions.


Sign in / Sign up

Export Citation Format

Share Document