scholarly journals A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

2011 ◽  
Vol 15 (1) ◽  
pp. 119-139 ◽  
Author(s):  
Z. Q. Gao ◽  
C. S. Liu ◽  
W. Gao ◽  
N.-B. Chang

Abstract. Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

2010 ◽  
Vol 7 (4) ◽  
pp. 4875-4924 ◽  
Author(s):  
Z. Q. Gao ◽  
C. S. Liu ◽  
W. Gao ◽  
N. B. Chang

Abstract. Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.


2021 ◽  
Vol 58 (03) ◽  
pp. 274-285
Author(s):  
H. V. Parmar ◽  
N. K. Gontia

Remote sensing based various land surface and bio-physical variables like Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), surface albedo, transmittance and surface emissivity are useful for the estimation of spatio-temporal variations in evapotranspiration (ET) using Surface Energy Balance Algorithm for Land (SEBAL) method. These variables were estimated under the present study for Ozat-II canal command in Junagadh district, Gujarat, India, using Landsat-7 and Landsat-8 images of summer season of years 2014 and 2015. The derived parameters were used in SEBAL to estimate the Actual Evapotranspiration (AET) of groundnut and sesame crops. The lower values NDVI observed during initial (March) and end (May) stages of crop growth indicated low vegetation cover during these periods. With full canopy coverage of the crops, higher value of NDVI (0.90) was observed during the mid-crop growth stage. The remote sensing-based LST was lower for agricultural areas and the area near banks of the canal and Ozat River, while higher surface temperatures were observed for rural settlements, road and areas with exposed dry soil. The maximum surface temperatures in the cropland were observed as 311.0 K during March 25, 2014 and 315.8 K during May 31, 2015. The AET of summer groundnut increased from 3.75 to 7.38 mm.day-1, and then decreased to 3.99 mm.day-1 towards the end stage of crop growth. The daily AET of summer sesame ranged from 1.06 to 7.72 mm.day-1 over different crop growth stages. The seasonal AET of groundnut and sesame worked out to 358.19 mm and 346.31 mm, respectively. The estimated AET would be helpful to schedule irrigation in the large canal command.


2020 ◽  
pp. 1-19
Author(s):  
Manish K. Nema ◽  
Hitesh P. Thakur ◽  
Hitesh Upreti ◽  
Sanjay K. Jain ◽  
P. K. Mishra ◽  
...  

1998 ◽  
Vol 212-213 ◽  
pp. 213-229 ◽  
Author(s):  
W.G.M. Bastiaanssen ◽  
H. Pelgrum ◽  
J. Wang ◽  
Y. Ma ◽  
J.F. Moreno ◽  
...  

2005 ◽  
Author(s):  
F.G. Hall ◽  
D.E. Strebel ◽  
P.J. Sellers ◽  
K.F. Huemmrich ◽  
S.J. Goetz

Author(s):  
Mulugeta Genanu ◽  
Tena Alamirew ◽  
Gabriel Senay ◽  
Mekonnen Gebremichael

Remote sensing datasets are increasingly being used to provide spatially explicit large scale evapotranspiration (ET) estimates. The focus of this study was to estimate and thematically map on a pixel-by-pixel basis, the actual evapotranspiration (ETa) of the Wonji Shoa Sugarcane Estate using the Surface Energy Balance Algorithm for Land (SEBAL), Simplified Surface Energy Balance (SSEB) and Operational Simplified Surface Energy Balance (SSEBop) algorithms. The results obtained revealed that the ranges of the daily ETa estimated on January 25, February 26, September 06 and October 08, 2002 using SEBAL were 0.0 - 6.85, 0.0 – 9.36, 0.0 – 3.61, 0.0 – 6.83 mm/day; using SSEB 0.0 - 6.78, 0.0 – 7.81, 0.0 – 3.65, 0.0 – 6.46 mm/day, and SSEBop were 0.05 - 8.25, 0.0 – 8.82, 0.2 – 4.0, 0.0 – 7.40 mm/day, respectively. The Root Mean Square Error (RMSE) values between SSEB and SEBAL, SSEBop and SEBAL, and SSEB and SSEBop were 0.548, 0.548, and 0.99 for January 25, 2002; 0.739, 0.753, and 0.994 for February 26, 2002;0.847, 0.846, and 0.999 for September 06, 2002; 0.573, 0.573, and 1.00 for October 08, 2002, respectively. The standard deviation of ETa over the sugarcane estate showed high spatio-temporal variability perhaps due to soil moisture variability and surface cover. The three algorithm results showed that well watered sugarcane fields in the mid-season growing stage of the crop had higher ETa values compared with the other dry agricultural fields confirming that they consumptively use more water. Generally during the dry season, ETa is limited to water surplus areas only and in wet season, ETa was high throughout the entire sugarcane estate. The evaporation fraction (ETrF) results also followed the same pattern as the daily ETa over the sugarcane estate. The total crop and irrigation water requirement and effective rainfall estimated using the Cropwat model were 2468.8, 2061.6 and 423.8 mm/yr for January 2001 planted and 2281.9, 1851.0 and 437.8 mm/yr for March 2001 planted sugarcanes, respectively. The mean annual ETa estimated for the whole estate were 107 Mm3, 140 Mm3, and 178 Mm3 using SEBAL, SSEB, and SSEBop, respectively. Even though the algorithms should be validated through field observation, they have potential to be used for effective estimation of ET in the sugarcane estate.


Sign in / Sign up

Export Citation Format

Share Document