scholarly journals Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite

2012 ◽  
Vol 16 (8) ◽  
pp. 2567-2583 ◽  
Author(s):  
N. Ghilain ◽  
A. Arboleda ◽  
G. Sepulcre-Cantò ◽  
O. Batelaan ◽  
J. Ardö ◽  
...  

Abstract. Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG) and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF) are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I), showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual) variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI) and Fractional Vegetation Cover (FVC) products for evapotranspiration monitoring with a land surface model at 3–5 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north–south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land surface temperature shows an improvement of the evapotranspiration simulations.

2011 ◽  
Vol 8 (5) ◽  
pp. 9113-9171 ◽  
Author(s):  
N. Ghilain ◽  
A. Arboleda ◽  
G. Sepulcre-Cantò ◽  
O. Batelaan ◽  
J. Ardö ◽  
...  

Abstract. Vegetation parameters derived from the geostationary satellite MSG/SEVIRI have been distributed at a daily frequency since 2007 over Europe, Africa and part of South America, through the LSA-SAF facility. We propose here a method to handle two new remote sensing products from LSA-SAF, leaf area index and Fractional Vegetation Cover, noted LAI and FVC respectively, for land surface models at MSG/SEVIRI scale. The developed method relies on an ordinary least-square technique and a land cover map to estimate LAI for each model plant functional types of the model spatial unit. The method is conceived to be applicable for near-real time applications at continental scale. Compared to monthly vegetation parameters from a vegetation database commonly used in numerical weather predictions (ECOCLIMAP-I), the new remote sensing products allows a better monitoring of the spatial and temporal variability of the vegetation, including inter-annual signals, and a decreased uncertainty on LAI to be input into land surface models. We assess the impact of using LSA-SAF vegetation parameters compared to ECOCLIMAP-I in the land surface model H-TESSEL at MSG/SEVIRI scale. Comparison with in-situ observations in Europe and Africa shows that the results on evapotranspiration are mostly improved, and especially in semi-arid climates. At last, the use of LSA-SAF and ECOCLIMAP-I is compared with simulations over a North-South Transect in Western Africa using LSA-SAF radiation forcing derived from remote sensing, and differences are highlighted.


2017 ◽  
Vol 21 (11) ◽  
pp. 5693-5708 ◽  
Author(s):  
Jordi Etchanchu ◽  
Vincent Rivalland ◽  
Simon Gascoin ◽  
Jérôme Cros ◽  
Tiphaine Tallec ◽  
...  

Abstract. Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively) that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA) land surface model included in the EXternalized SURface (SURFEX) modeling platform. The study focuses on the effect of the leaf area index (LAI) spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m). The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km). An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE). Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE) in the simulated evapotranspiration. This finding is attributable to a better description of LAI evolution processes with Formosat-2 data, which further modify soil water content and drainage of soil reservoirs. Effects on annual drainage patterns remain small but significant, i.e., an increase roughly equivalent to 4 % of annual precipitation levels with simulations using Formosat-2 data in comparison to the reference simulation values. This study illustrates the potential for the Sentinel-2 mission to better represent effects of crop management on water budgeting for large, anthropized river basins.


2014 ◽  
Vol 15 (3) ◽  
pp. 1293-1302 ◽  
Author(s):  
M. Tugrul Yilmaz ◽  
Wade T. Crow

Abstract Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and orthogonality with respect to the truth) are required for TCA estimates to be unbiased. Even though soil moisture studies commonly acknowledge that these assumptions are required for an unbiased TCA, no study has specifically investigated the degree to which errors in existing soil moisture datasets conform to these assumptions. Here these assumptions are evaluated both analytically and numerically over four extensively instrumented watershed sites using soil moisture products derived from active microwave remote sensing, passive microwave remote sensing, and a land surface model. Results demonstrate that nonorthogonal and error cross-covariance terms represent a significant fraction of the total variance of these products. However, the overall impact of error cross correlation on TCA is found to be significantly larger than the impact of nonorthogonal errors. Because of the impact of cross-correlated errors, TCA error estimates generally underestimate the true random error of soil moisture products.


2017 ◽  
Author(s):  
Jordi Etchanchu ◽  
Vincent Rivalland ◽  
Simon Gascoin ◽  
Jérôme Cros ◽  
Aurore Brut ◽  
...  

Abstract. Agricultural landscapes often include a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes as simulated by land surface and distributed hydrological models. Sentinel-2 mission satellite remote sensing products allow for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively) that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy flux via the ISBA-SURFEX land surface model. The study area is a 24 km by 24 km agricultural zone in southwestern France. An initial reference simulation was conducted from 2006–2010 using the ECOCLIMAP-II database. This global numerical land ecosystem database was created at a 1 km resolution and includes an ecosystem classification with a consistent set of land surface parameters required for the model, such as the Leaf Area Index (LAI) and albedo measures. The LAI of ECOCLIMAP is climatologic and derived from a 2000–2005 analysis of MODIS satellite products. This low resolution induces that several vegetation covers can be mixed in a model cell. The climatic construction of LAI dynamics also suggests that there is no interannual variability in the vegetation cycle. A second simulation was performed by forcing the same model with annual land cover maps and monthly LAI values derived from a series of 105 8 m-resolution Formosat-2 images for the same period. Both simulations were conducted at the parcel scale, i.e., a computation unit covers an area of connected pixels of the same vegetation type (a crop field, forest patch, etc.). To evaluate our simulations, we used in situ measurements of evapotranspiration and latent and sensible heat flux from two eddy covariance stations in the study area. Our results show that the use of Formosat-2 high-resolution products significantly improves simulated evapotranspiration results with respect to ECOCLIMAP-II, especially when a surface is covered with summer crops (the correlation coefficient with monthly measurements is increased by roughly 0.3 and the root mean square error is decreased by roughly 31 %). This finding is attributable to a better description of LAI evolution processes reflected by Formosat-2 data, which further modify soil water content and drainage levels of deep soil reservoirs. Effects on annual drainage patterns remain small but significant, i.e., an increase roughly equivalent to 4 % of annual precipitation levels from Formosat-2 data in comparison to reference values. In smaller proportions, runoff is also increased by roughly 1 % of annual precipitation when using Formosat-2 data. This study illustrates the potential for the Sentinel-2 mission to better represent effects of crop management on water budgeting for large, anthropized river basins.


2014 ◽  
Vol 7 (5) ◽  
pp. 6773-6809
Author(s):  
T. Osborne ◽  
J. Gornall ◽  
J. Hooker ◽  
K. Williams ◽  
A. Wiltshire ◽  
...  

Abstract. Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.


Author(s):  
David M. Mocko ◽  
Sujay V. Kumar ◽  
Christa D. Peters-Lidard ◽  
Shugong Wang

AbstractThis study presents an evaluation of the impact of vegetation conditions on a land-surface model (LSM) simulation of agricultural drought. The Noah-MP LSM is used to simulate water and energy fluxes and states, which are transformed into drought categories using percentiles over the continental U.S. from 1979 to 2017. Leaf Area Index (LAI) observations are assimilated into the dynamic vegetation scheme of Noah-MP. A weekly operational drought monitor (the U.S. Drought Monitor) is used for the evaluation. The results show that LAI assimilation into Noah-MP’s dynamic vegetation scheme improves the model's ability to represent drought, particularly over cropland areas. LAI assimilation improves the simulation of the drought category, detection of drought conditions, and reduces the instances of drought false alarms. The assimilation of LAI in these locations not only corrects model errors in the simulation of vegetation, but also can help to represent unmodeled physical processes such as irrigation towards improved simulation of agricultural drought.


2018 ◽  
Vol 22 (6) ◽  
pp. 3515-3532 ◽  
Author(s):  
Clement Albergel ◽  
Emanuel Dutra ◽  
Simon Munier ◽  
Jean-Christophe Calvet ◽  
Joaquin Munoz-Sabater ◽  
...  

Abstract. The European Centre for Medium-Range Weather Forecasts (ECMWF) recently released the first 7-year segment of its latest atmospheric reanalysis: ERA-5 over the period 2010–2016. ERA-5 has important changes relative to the former ERA-Interim atmospheric reanalysis including higher spatial and temporal resolutions as well as a more recent model and data assimilation system. ERA-5 is foreseen to replace ERA-Interim reanalysis and one of the main goals of this study is to assess whether ERA-5 can enhance the simulation performances with respect to ERA-Interim when it is used to force a land surface model (LSM). To that end, both ERA-5 and ERA-Interim are used to force the ISBA (Interactions between Soil, Biosphere, and Atmosphere) LSM fully coupled with the Total Runoff Integrating Pathways (TRIP) scheme adapted for the CNRM (Centre National de Recherches Météorologiques) continental hydrological system within the SURFEX (SURFace Externalisée) modelling platform of Météo-France. Simulations cover the 2010–2016 period at half a degree spatial resolution. The ERA-5 impact on ISBA LSM relative to ERA-Interim is evaluated using remote sensing and in situ observations covering a substantial part of the land surface storage and fluxes over the continental US domain. The remote sensing observations include (i) satellite-driven model estimates of land evapotranspiration, (ii) upscaled ground-based observations of gross primary production, (iii) satellite-derived estimates of surface soil moisture and (iv) satellite-derived estimates of leaf area index (LAI). The in situ observations cover (i) soil moisture, (ii) turbulent heat fluxes, (iii) river discharges and (iv) snow depth. ERA-5 leads to a consistent improvement over ERA-Interim as verified by the use of these eight independent observations of different land status and of the model simulations forced by ERA-5 when compared with ERA-Interim. This is particularly evident for the land surface variables linked to the terrestrial hydrological cycle, while variables linked to vegetation are less impacted. Results also indicate that while precipitation provides, to a large extent, improvements in surface fields (e.g. large improvement in the representation of river discharge and snow depth), the other atmospheric variables play an important role, contributing to the overall improvements. These results highlight the importance of enhanced meteorological forcing quality provided by the new ERA-5 reanalysis, which will pave the way for a new generation of land-surface developments and applications.


2022 ◽  
Vol 3 ◽  
Author(s):  
Azbina Rahman ◽  
Xinxuan Zhang ◽  
Paul Houser ◽  
Timothy Sauer ◽  
Viviana Maggioni

As vegetation regulates water, carbon, and energy cycles from the local to the global scale, its accurate representation in land surface models is crucial. The assimilation of satellite-based vegetation observations in a land surface model has the potential to improve the estimation of global carbon and energy cycles, which in turn can enhance our ability to monitor and forecast extreme hydroclimatic events, ecosystem dynamics, and crop production. This work proposes the assimilation of a remotely sensed vegetation product (Leaf Area Index, LAI) within the Noah Multi-Parameterization land surface model using an Ensemble Kalman Filter technique. The impact of updating leaf mass along with LAI is also investigated. Results show that assimilating LAI data improves the estimation of transpiration and net ecosystem exchange, which is further enhanced by also updating the leaf mass. Specifically, transpiration anomaly correlation coefficients improve in about 77 and 66% of the global land area thanks to the assimilation of leaf area index with and without updating leaf mass, respectively. Random errors in transpiration are also reduced, with an improvement of the unbiased root mean square error in 70% (74%) of the total area without the update of leaf mass (with the update of leaf mass). Similarly, net ecosystem exchange anomaly correlation coefficients improve from 52 to 75% and random errors improve from 49 to 62% of the total pixels after the update of leaf mass. Better performances for both transpiration and net ecosystem exchange are observed across croplands, but the largest improvement is shown over forests and woodland. The global scope of this work makes it particularly important in data poor regions (e.g., Africa, South Asia), where ground observations are sparse or not available altogether but where an accurate estimation of carbon and energy variables can be critical to improve ecosystem and crop management.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Li Fang ◽  
Xiwu Zhan ◽  
Christopher R. Hain ◽  
Jicheng Liu

Green vegetation fraction (GVF) is one of the input parameters of the Noah land surface model (LSM) that is the land component of a number of operational numerical weather prediction (NWP) models at the National Centers for Environmental Prediction (NCEP) of NOAA. The Noah LSM in current NCEP operational NWP models has been using static multiyear averages of monthly GVF derived from satellite observations of NOAA Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation index. The multiyear averages of GVF are evidently not the representative of actual conditions of the land surface vegetation cover. This study used a near-real-time (NRT) GVF data set generated from the 8-day composite of the leaf area index product from the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess the impact of NRT GVF on off-line Noah LSM simulations and NWP forecast model. Simulations of the off-line Noah LSM in the Land Information System (LIS) and weather forecasts of the NASA-Unified Weather and Research Forecasting (NUWRF) were obtained using either the static multiyear average AVHRR GVF data set or the NRT MODIS GVF while meteorological forcing data and other settings were kept the same. The off-line simulations and WRF forecasts were then compared against in situ measurements or reanalysis products to assess the impact of using NRT GVF. Improvements of both soil moisture simulations as well as forecasts of 2-meter air temperature and humidity and precipitation from NUWRF were observed using the NRT GVF data products. The RMSE in SM estimates from the off-line Noah model is reduced by around 1.0% (1.41%) during the green-up phase and by 1.48% (2.24%) over the senescence phase for the surface (root zone) SM simulations. Around 82.3% validation sites (out of 1178 sites) showed positive impact on coupled WRF model with the insertion of NRT GVF.


2015 ◽  
Vol 19 (10) ◽  
pp. 4275-4291 ◽  
Author(s):  
W. Zhan ◽  
M. Pan ◽  
N. Wanders ◽  
E. F. Wood

Abstract. Rainfall and soil moisture are two key elements in modeling the interactions between the land surface and the atmosphere. Accurate and high-resolution real-time precipitation is crucial for monitoring and predicting the onset of floods, and allows for alert and warning before the impact becomes a disaster. Assimilation of remote sensing data into a flood-forecasting model has the potential to improve monitoring accuracy. Space-borne microwave observations are especially interesting because of their sensitivity to surface soil moisture and its change. In this study, we assimilate satellite soil moisture retrievals using the Variable Infiltration Capacity (VIC) land surface model, and a dynamic assimilation technique, a particle filter, to adjust the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) real-time precipitation estimates. We compare updated precipitation with real-time precipitation before and after adjustment and with NLDAS gauge-radar observations. Results show that satellite soil moisture retrievals provide additional information by correcting errors in rainfall bias. The assimilation is most effective in the correction of medium rainfall under dry to normal surface conditions, while limited/negative improvement is seen over wet/saturated surfaces. On the other hand, high-frequency noises in satellite soil moisture impact the assimilation by increasing rainfall frequency. The noise causes larger uncertainty in the false-alarmed rainfall over wet regions. A threshold of 2 mm day−1 soil moisture change is identified and applied to the assimilation, which masked out most of the noise.


Sign in / Sign up

Export Citation Format

Share Document