scholarly journals Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

2013 ◽  
Vol 17 (6) ◽  
pp. 2097-2105 ◽  
Author(s):  
D. J. Barrington ◽  
A. Ghadouani ◽  
G. N. Ivey

Abstract. Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (commonly occurring cyanotoxins) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full scale within a maturation WSP, the final pond in a wastewater treatment plant. Hydrogen peroxide treatment at concentrations ≥ 0.1 mg H2O2 μg−1 total phytoplankton chlorophyll a led to the lysis of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial Chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the Chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

2013 ◽  
Vol 10 (2) ◽  
pp. 2067-2088
Author(s):  
D. J. Barrington ◽  
A. Ghadouani ◽  
G. N. Ivey

Abstract. Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (a commonly occurring cyanotoxin) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full-scale within a WSP. Hydrogen peroxide treatment at concentrations ≥ 10−4 g H2O2 μg−1 of total phytoplankton chlorophyll a led to the death of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.


2005 ◽  
Vol 51 (12) ◽  
pp. 201-204 ◽  
Author(s):  
I.M. Kengne Noumsi ◽  
A. Akoa ◽  
R. Atangana Eteme ◽  
J. Nya ◽  
P. Ngniado ◽  
...  

A one-year study of the proliferation of mosquito in a Pistia stratiotes-based waste stabilization ponds in Cameroon revealed that Mansonia and Culex were the main breeding genera with about 55% and 42% of the total imagoes respectively. Though the ponds represent a favorable breeding ground for mosquitoes, only 0.02% of captured imagoes was Anopheles gambiae, suggesting that this wastewater treatment plant does not significantly contribute to the development of the malaria vector in the area. Gambusia sp. introduced to control mosquito population in the ponds acclimatized relatively well in most of the ponds (B3–B7) and their feeding rate without any diet ranged from 15.0 to 50.2 larvae/day for a single fish.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2000 ◽  
Vol 41 (1) ◽  
pp. 177-185 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

The aim of this study was to evaluate the performance of a full-scale upgrading of an existing RBC wastewater treatment plant with a MBBR (Moving Bed Biofilm Reactor) system, installed in a tank previously used for sludge aerobic digestion. The full-scale plant is located in a mountain resort in the North-East of Italy. Due to the fact that the people varied during the year's seasons (2000 resident people and 2000 tourists) the RBC system was insufficient to meet the effluent standards. The MBBR applied system consists of the FLOCOR-RMP®plastic media with a specific surface area of about 160 m2/m3 (internal surface only). Nitrogen and carbon removal from wastewater was investigated over a 1-year period, with two different plant lay-outs: one-stage (only MBBR) and two stage system (MBBR and rotating biological contactors in series). The systems have been operated at low temperature (5–15°C). 50% of the MBBR volume (V=79 m3) was filled. The organic and ammonium loads were in the average 7.9 gCOD m−2 d−1 and 0.9 g NH4−N m−2 d−1. Typical carbon and nitrogen removals in MBBR at temperature lower than 8°C were respectively 73% and 72%.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 23-34 ◽  
Author(s):  
T. Nameche ◽  
O. Dufayt ◽  
H. El Ouarghi ◽  
J.L. Vasel

AbstractThe Bertrix wastewater treatment plant was designed and built for experimental purposes, especially for comparing aerated lagoons and stabilization ponds in a temperate climate. This plant was designed for a capacity of 7500 inhab. eq, and aerated lagoons were dimensioned to eliminate 50% of the organic load. The remaining load has to be degraded in the series of stabilization ponds. In this paper we shall present the plant in more detail and the results of a 3-year study, i.e., 79 rounds of samples for each of the five ponds under study, placing emphasis on the performances of aerated lagoons and stabilization ponds. Principal components analysis (of inflow and outflow) of aerated lagoons and stabilization ponds will be presented and commented on. The most important factors are the hydraulic loading and the concentrations. Seasonal variations appear only in the basins' temperatures. The fates of nitrogen compounds are quite different from those of organic compounds, confirming that a high efficiency of nitrogen removal is difficult to achieve, especially for short residence times (less than eight days). A few other conclusions of our study are given below: The ponds' hydrodynamics has been studied and a mathematical model is now available If there is no stratification in the ponds, a thermal model can be proposed where the mean absolute difference is 0.7°C±0.2. In the system under study, the contribution of algal biomass to the system is very small.


2019 ◽  
Vol 658 ◽  
pp. 947-957 ◽  
Author(s):  
Rahul Kumar ◽  
Ben Tscharke ◽  
Jake O'Brien ◽  
Jochen F. Mueller ◽  
Chris Wilkins ◽  
...  

2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Veronica R. Brand ◽  
Laurel D. Crosby ◽  
Craig S. Criddle

ABSTRACTMultiple clades within a microbial taxon often coexist within natural and engineered environments. Because closely related clades have similar metabolic potential, it is unclear how diversity is sustained and what factors drive niche differentiation. In this study, we retrieved three near-complete Competibacter lineage genomes from activated sludge metagenomes at a full-scale pure oxygen activated sludge wastewater treatment plant. The three genomes represent unique taxa within theCompetibacteraceae. A comparison of the genomes revealed differences in capacity for exopolysaccharide (EPS) biosynthesis, glucose fermentation to lactate, and motility. Using quantitative PCR (qPCR), we monitored these clades over a 2-year period. The clade possessing genes for motility and lacking genes for EPS biosynthesis (CPB_P15) was dominant during periods of suspended solids in the effluent. Further analysis of operational parameters indicate that the dominance of the CPB_P15 clade is associated with low-return activated sludge recycle rates and low wasting rates, conditions that maintain relatively high levels of biomass within the system.IMPORTANCEMembers of the Competibacter lineage are relevant in biotechnology as glycogen-accumulating organisms (GAOs). Here, we document the presence of threeCompetibacteraceaeclades in a full-scale activated sludge wastewater treatment plant and their linkage to specific operational conditions. We find evidence for niche differentiation among the three clades with temporal variability in clade dominance that correlates with operational changes at the treatment plant. Specifically, we observe episodic dominance of a likely motile clade during periods of elevated effluent turbidity, as well as episodic dominance of closely related nonmotile clades that likely enhance floc formation during periods of low effluent turbidity.


Sign in / Sign up

Export Citation Format

Share Document