scholarly journals Climate model uncertainty versus conceptual geological uncertainty in hydrological modeling

2015 ◽  
Vol 19 (9) ◽  
pp. 3891-3901 ◽  
Author(s):  
T. O. Sonnenborg ◽  
D. Seifert ◽  
J. C. Refsgaard

Abstract. Projections of climate change impact are associated with a cascade of uncertainties including in CO2 emission scenarios, climate models, downscaling and impact models. The relative importance of the individual uncertainty sources is expected to depend on several factors including the quantity that is projected. In the present study the impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Each projection of future climate is a result of a GCM–RCM model combination (from the ENSEMBLES project) forced by the same CO2 scenario (A1B). The changes from the reference period (1991–2010) to the future period (2081–2100) in projected hydrological variables are evaluated and the effects of geological model and climate model uncertainties are quantified. The results show that uncertainty propagation is context-dependent. While the geological conceptualization is the dominating uncertainty source for projection of travel time and capture zones, the uncertainty due to the climate models is more important for groundwater hydraulic heads and stream flow.

2015 ◽  
Vol 12 (4) ◽  
pp. 4353-4385 ◽  
Author(s):  
T. O. Sonnenborg ◽  
D. Seifert ◽  
J. C. Refsgaard

Abstract. Projections of climate change impact are associated with a cascade of uncertainties including CO2 emission scenario, climate model, downscaling and impact model. The relative importance of the individual uncertainty sources is expected to depend on several factors including the quantity that is projected. In the present study the impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Each projection of future climate is a result of a GCM-RCM model combination (from the ENSEMBLES project) forced by the same CO2 scenario (A1B). The changes from the reference period (1991–2010) to the future period (2081–2100) in projected hydrological variables are evaluated and the effects of geological model and climate model uncertainties are quantified. The results show that uncertainty propagation is context dependent. While the geological conceptualization is the dominating uncertainty source for projection of travel time and capture zones, the uncertainty on the climate models is more important for groundwater hydraulic heads and stream flow.


2014 ◽  
Vol 128 (1-2) ◽  
pp. 113-126 ◽  
Author(s):  
A. E. Harding ◽  
M. Rivington ◽  
M. J. Mineter ◽  
S. F. B. Tett

2013 ◽  
Vol 10 (7) ◽  
pp. 9105-9145 ◽  
Author(s):  
R. Deidda ◽  
M. Marrocu ◽  
G. Caroletti ◽  
G. Pusceddu ◽  
A. Langousis ◽  
...  

Abstract. This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs), from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22-degree (about 24 km) rotated grid over Europe and the Mediterranean. In the validation period (1951 to 2010) we consider daily precipitation and surface temperatures from the E-OBS dataset, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of 4 RCMs for all studied catchments reduces the (epistemic) uncertainty when evaluating trends and climate change impacts in the XXI century. We present and discuss the validation setting, as well as the obtained results and, to some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and hint for an audience of researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more in general, climate change impact studies in the Mediterranean.


2013 ◽  
Vol 120 (1-2) ◽  
pp. 211-227 ◽  
Author(s):  
Tobias Lung ◽  
Alessandro Dosio ◽  
William Becker ◽  
Carlo Lavalle ◽  
Laurens M. Bouwer

2011 ◽  
Vol 15 (5) ◽  
pp. 1537-1545 ◽  
Author(s):  
A. K. Gain ◽  
W. W. Immerzeel ◽  
F. C. Sperna Weiland ◽  
M. F. P. Bierkens

Abstract. Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact river flow in the Brahmaputra basin is yet unclear, as climate model studies show ambiguous results. In this study we investigate the effect of climate change on both low and high flows of the lower Brahmaputra. We apply a novel method of discharge-weighted ensemble modeling using model outputs from a global hydrological models forced with 12 different global climate models (GCMs). Our analysis shows that only a limited number of GCMs are required to reconstruct observed discharge. Based on the GCM outputs and long-term records of observed flow at Bahadurabad station, our method results in a multi-model weighted ensemble of transient stream flow for the period 1961–2100. Using the constructed transients, we subsequently project future trends in low and high river flow. The analysis shows that extreme low flow conditions are likely to occur less frequent in the future. However a very strong increase in peak flows is projected, which may, in combination with projected sea level change, have devastating effects for Bangladesh. The methods presented in this study are more widely applicable, in that existing multi-model streamflow simulations from global hydrological models can be weighted against observed streamflow data to assess at first order the effects of climate change for specific river basins.


2018 ◽  
Vol 31 (24) ◽  
pp. 10013-10020
Author(s):  
Bernard R. Lipat ◽  
Aiko Voigt ◽  
George Tselioudis ◽  
Lorenzo M. Polvani

Recent analyses of global climate models suggest that uncertainty in the coupling between midlatitude clouds and the atmospheric circulation contributes to uncertainty in climate sensitivity. However, the reasons behind model differences in the cloud–circulation coupling have remained unclear. Here, we use a global climate model in an idealized aquaplanet setup to show that the Southern Hemisphere climatological circulation, which in many models is biased equatorward, contributes to the model differences in the cloud–circulation coupling. For the same poleward shift of the Hadley cell (HC) edge, models with narrower climatological HCs exhibit stronger midlatitude cloud-induced shortwave warming than models with wider climatological HCs. This cloud-induced radiative warming results predominantly from a subsidence warming that decreases cloud fraction and is stronger for narrower HCs because of a larger meridional gradient in the vertical velocity. A comparison of our aquaplanet results with comprehensive climate models suggests that about half of the model uncertainty in the midlatitude cloud–circulation coupling stems from this impact of the circulation on the large-scale temperature structure of the atmosphere, and thus could be removed by improving the climatological circulation in models. This illustrates how understanding of large-scale dynamics can help reduce uncertainty in clouds and their response to climate change.


2006 ◽  
Vol 20 (10) ◽  
pp. 2091-2109 ◽  
Author(s):  
Pascal Horton ◽  
Bettina Schaefli ◽  
Abdelkader Mezghani ◽  
Benoît Hingray ◽  
André Musy

Sign in / Sign up

Export Citation Format

Share Document