scholarly journals An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia

2016 ◽  
Vol 20 (5) ◽  
pp. 1703-1717 ◽  
Author(s):  
Carly R. Tozer ◽  
Tessa R. Vance ◽  
Jason L. Roberts ◽  
Anthony S. Kiem ◽  
Mark A. J. Curran ◽  
...  

Abstract. Paleoclimate research indicates that the Australian instrumental climate record (∼ 100 years) does not cover the full range of hydroclimatic variability that is possible. To better understand the implications of this on catchment-scale water resources management, a 1013-year (1000–2012 common era (CE)) annual rainfall reconstruction was produced for the Williams River catchment in coastal eastern Australia. No high-resolution paleoclimate proxies are located in the region and so a teleconnection between summer sea salt deposition recorded in ice cores from East Antarctica and rainfall variability in eastern Australia was exploited to reconstruct the catchment-scale rainfall record. The reconstruction shows that significantly longer and more frequent wet and dry periods were experienced in the preinstrumental compared to the instrumental period. This suggests that existing drought and flood risk assessments underestimate the true risks due to the reliance on data and statistics obtained from only the instrumental record. This raises questions about the robustness of existing water security and flood protection measures and has serious implications for water resources management, infrastructure design and catchment planning. The method used in this proof of concept study is transferable and enables similar insights into the true risk of flood/drought to be gained for other paleoclimate proxy poor regions for which suitable remote teleconnected proxies exist. This will lead to improved understanding and ability to deal with the impacts of multi-decadal to centennial hydroclimatic variability.

2015 ◽  
Vol 12 (12) ◽  
pp. 12483-12514 ◽  
Author(s):  
C. R. Tozer ◽  
T. R. Vance ◽  
J. Roberts ◽  
A. S. Kiem ◽  
M. A. J. Curran ◽  
...  

Abstract. Paleoclimate research indicates that the instrumental climate record (~100 years in Australia) does not cover the full range of hydroclimatic variability possible. To better understand the implications of this for catchment-scale water resources management, an annual rainfall reconstruction is produced for the Williams River catchment in coastal eastern Australia. No high resolution palaeoclimate proxies are located in the region and so a teleconnection between summer sea salt deposition recorded in ice cores from East Antarctica and rainfall variability in eastern Australia was exploited to reconstruct 1013 years of rainfall (AD 1000–2012). The reconstruction shows that significantly longer and more frequent wet and dry periods were experienced in the preinstrumental compared to the instrumental period. This suggests that existing drought and flood risk assessments underestimate the true risks due to the reliance on data and statistics obtained from only the instrumental record. This raises questions about the robustness of existing water security and flood protection measures and has serious implications for water resources management, infrastructure design, and catchment planning. The method used in this proof of concept study is transferable and enables similar insights into the true risk of flood/drought to be gained for other locations that are teleconnected to East Antarctica. This will lead to improved understanding and ability to deal with the impacts of multidecadal to centennial hydroclimatic variability.


2021 ◽  
Vol 16 (1) ◽  
pp. 115-122
Author(s):  
Solomon O. Amadi ◽  
Mfongang E. Agbor ◽  
Sunday O. Udo

In this study, Calabar annual total rainfall was analysed for trend and climatic variability events with focus on drought occurrence. Monthly rainfall data from in situ measurements over a 41 year period (1972-2012) were used for the study. Standard tests were used to evaluate the trends and variability in annual rainfall. Rainfall variability was estimated as standardized rainfall departures and used to identify and delimitate the dry and wet spell sequences of Calabar rainfall. The rainfall series were analysed for Standardized Precipitation Index (SPI) using SPSS Version 17 software. The least squares regression plot was executed using Excel 2010 to depict the trend, variability and regression parameters. The average annual rainfall for Calabar is 2984.64 mm with standard deviation of 394.9 mm. 36.59% of the period showed positive SPI while 63.41 % of the period indicated negative SPI values. Wet spell dominated the later part of the period but sandwiched with dry spells whereas dry spell were dominant from 1972 to 1994. The area experienced a non-significant upward trend of 15.21 mm per year over the interval. The SPI values indicate that Calabar experienced distinct inter-annual rainfall cycles that represent mild to extreme droughts and wet spells which are a demonstration of consequential annual rainfall variability. The results underscore the need for effective monitoring of Calabar rainfall for prompt warnings and responses that would guarantee effective risk reduction and management in the run-in to the occurrence of the extreme events. The paper further highlights the need for data-driven approach to policy making in water resources management. This would provide a fascinating insight into the improvement in long-term water resources management in the city and its suburbs.


2021 ◽  
Vol 8 (1) ◽  
pp. 53-60
Author(s):  
Solomon O. Amadi ◽  
Mfongang E. Agbor ◽  
Sunday O. Udo

In this study, Calabar annual total rainfall was analysed for trend and climatic variability events with focus on drought occurrence. Monthly rainfall data from in situ measurements over a 41-year period (1972-2012) were used for the study. Standard tests were used to evaluate the trends and variability in annual rainfall. Rainfall variability was estimated as standardized rainfall departures and used to identify and delimitate the dry and wet spell sequences of Calabar rainfall. The rainfall series were analysed for Standardized Precipitation Index (SPI) using SPSS Version 17 software. The least squares regression plot was executed using Excel 2010 to depict the trend, variability and regression parameters. The average annual rainfall for Calabar is 2984.64 mm with standard deviation of 394.9 mm. 36.59% of the period showed positive SPI while 63.41% of the period indicated negative SPI values. Wet spell dominated the later part of the period but sandwiched with dry spells whereas dry spell was dominant from 1972 to 1994. The area experienced a non-significant upward trend of 15.21 mm per year over the interval. The SPI values indicate that Calabar experienced distinct inter-annual rainfall cycles that represent mild to extreme droughts and wet spells which are a demonstration of consequential annual rainfall variability. The results underscore the need for effective monitoring of Calabar rainfall for prompt warnings and responses that would guarantee effective risk reduction and management in the run-in to the occurrence of the extreme events. The paper further highlights the need for data-driven approach to policy making in water resources management. This would provide a fascinating insight into the improvement in long-term water resources management in the city and its suburbs.


Author(s):  
Ernest Othieno Odwori ◽  
Jacob Wanambacha Wakhungu

Nzoia river is mainly rain fed and the basin is one of the regions that is highly vulnerable to climate change in Kenya. Understanding rainfall variability and trends is important for better water resources management and economic development in the basin. The aim of this study is to assess variability and trends in rainfall at 13 sites within Nzoia River Basin over the period, 1970 to 2001, using the parametric test of Linear regression analysis and the non-parametric Mann–Kendall statistical test. Data for this study was obtained from the Kenya Meteorological Department (KMD). The basin experiences four rainfall seasons in a year as a result of the Inter-Tropical Convergence Zone (ITCZ). There are two rainy seasons and two dry seasons. Annual rainfall through Linear regression analysis shows 6 stations, Kaimosi Tea Estate Ltd, Kakamega Meteorological Station, Bungoma Water Supply, Nzoia Forest Station, Malava Forest Station and Webuye Agricultural Office with declining rainfalls. The remaining 7 stations, Leissa Farm Kitale, Turbo Forest Nursery, Chorlim ADC Farm, Kaptagat Forest Station, Kimilili Agricultural Department, Bunyala Irrigation Scheme and Kadenge Yala Swamp showed increasing rainfalls. The majority of stations with increasing annual rainfall are in the upper catchment whereas those with decreasing rainfall are in the middle and lower catchment. Only 3 out of the 13 stations showed statistically significant trends in rainfall with two in the upper catchment and one in the middle; the remaining 10 stations had statistically insignificant trends. These observed changes in rainfall, although most time series are not convincing as they show predominantly no significance, along with the reported climatic warming in most parts of the basin may have future implications on human health, water resources management, various plant and animal species bio-diversity and the overall economic development of the basin.


2021 ◽  
pp. 99-120
Author(s):  
Khaled Mokhtar ◽  
St John Day

Abstract Sudan is a vulnerable and challenging environment as a result of its climate, hydrology, and hydrogeology. Other entrenched human factors, such as authoritarian rule, limited historical investment in rural water services and the gradual decline of national institutions make it particularly difficult. This has manifested itself today into low levels of water supply coverage particularly amongst rural communities. Trust between rural communities in Kassala and government institutions has also declined for those left behind in rural hinterlands. Providing sustainable and resilient water services in rural Sudan is difficult work, not least because of high rainfall variability, inadequate infrastructure and the lack of continuous external support to communities when problems arise. This paper describes efforts to strengthen links between water resources management and WASH, and the challenges faced when national institutions responsible for water resources and water supply are weak. It documents recent efforts to ensure water supply services can provide water year round and increase collaboration between rural communities and mandated government authorities. It is intended to be read by government personnel, non-governmental organisations and other staff that are directly involved in implementing integrated water resource management programmes in complex environments.


2007 ◽  
Vol 4 (5) ◽  
pp. 3793-3837 ◽  
Author(s):  
V. M. Kongo ◽  
J. R. Kosgei ◽  
G. P. W. Jewitt ◽  
S. A. Lorentz

Abstract. The establishment of a catchment monitoring network is a process, from the inception of the idea to its implementation, the latter being the construction of relevant gauging structures and installation of the various instruments. It is useful that the local communities and other stakeholders are involved and participate in such a process as was realised during the establishment of the hydrological monitoring network in the Potshini catchment in the Bergville district in the KwaZulu-Natal Province in South Africa. The paper illustrates the participatory application of various methods and techniques for establishing a hydrological monitoring network, in a small rural inhabited catchment, to monitor hydrological processes at both field and catchment scale for research purposes in water resources management. The authors conclude that the participation of the local community and other stakeholders in catchment monitoring and instilling the sense of ownership and management of natural resources to the local communities needs to be encouraged at all times. Success stories in water resources management by local communities can be realized if such a process is integrated with other development plans in the catchment at all forums with due recognition of the social dynamics of the communities living in the catchment.


2010 ◽  
Vol 14 (12) ◽  
pp. 2507-2525 ◽  
Author(s):  
V. M. Kongo ◽  
J. R. Kosgei ◽  
G. P. W. Jewitt ◽  
S. A. Lorentz

Abstract. The establishment of a catchment monitoring network is a process, from the inception of the idea to its implementation, the latter being the construction of relevant gauging structures and installation of the various instruments. It is useful that the local communities and other stakeholders are involved and participate in such a process, as was highlighted during the establishment of the hydrological monitoring network in the Potshini catchment in Bergville District in the KwaZulu-Natal Province, South Africa. The paper highlights the participatory establishment of a hydrological monitoring network in a small rural inhabited catchment, in line with the overall objective of the Smallholder System Innovations (SSI) research programme, to monitor hydrological processes at both field and catchment scale for water resources management research purposes. The engagement and participation of the Potshini community precipitated a learning opportunity for both the researchers and the local community on (i) the understanding of hydrological processes inherent in the catchment (ii) appreciating the inherent dynamics in establishing a catchment monitoring network in the midst of a community (iii) paradigm shift on how to engage different stakeholders at different levels of participation. The participatory engagement in the monitoring process led to appreciation and uptake of some of the research results by the Potshini community and ensured continued support from all stakeholders. This paper is of the view that the participation of the local community and other stakeholders in catchment monitoring and instilling a sense of ownership and management of natural resources to the local communities needs to be encouraged at all times. Success stories in water resources management by local communities can be realized if such a process is integrated with other development plans in the catchment at all forums, with due recognition of the social dynamics of the communities living in the catchment.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 638
Author(s):  
Giovanni Ravazzani ◽  
Tommaso Caloiero ◽  
Mouna Feki ◽  
Gaetano Pellicone

Integrated water resources management at the catchment scale, considering the full water cycle as manageable, is a primary approach to improve water use efficiency and promote sustainable water management solutions. To this purpose, advanced modelling tools are required to quantify the physical and economic effects of alternative land management options. This work presents an application of a spatially distributed physically based hydrological model to the Bonis experimental watershed located in the mountain area of Sila Greca (southern Italy). Different infiltration models were tested to better reproduce discharge observations at basin outlet. The model will be used for evaluating different land use/management scenarios, combined with climate change forcing, to quantify the effect of alternative management options on the land-water cycle. This work is part of the INNOMED project (Innovative Options for Integrated Water Resources Management in the Mediterranean) funded by ERA-NET COFUND WATERWORKS 2015 call.


Sign in / Sign up

Export Citation Format

Share Document