scholarly journals Supplementary material to "Impact of snow deposition on major and trace element concentrations and fluxes in surface waters of Western Siberian Lowland"

Author(s):  
Vladimir P. Shevchenko ◽  
Oleg S. Pokrovsky ◽  
Sergey N. Vorobyev ◽  
Ivan V. Krickov ◽  
Rinat M. Manasypov ◽  
...  
2016 ◽  
Author(s):  
Vladimir P. Shevchenko ◽  
Oleg S. Pokrovsky ◽  
Sergey N. Vorobyev ◽  
Ivan V. Krickov ◽  
Rinat M. Manasypov ◽  
...  

Abstract. Towards a better understanding of chemical composition of snow and its impact on surface water hydrochemistry in poorly studied Western Siberia Lowland (WSL), dissolved (melted snow) and particulate (> 0.45 μm) fractions of snow were sampled in February 2014 across a 1700-km latitudinal gradient (c.a. 56.5 to 68° N) in essentially pristine regions. Concentration of dissolved Fe, Co, Cu, As, La, increased by a factor of 2 to 5 north of 63° N. The pH, Ca, Mg, Sr, Mo and U dissolved concentration in snow water increased with the increase in concentration of particulate fraction (PF), which was also correlated with the increase in calcite and dolomite proportion in the mineral fraction, suggesting an enrichment of meltwater by these elements during dissolution of carbonate minerals. The concentrations of Al, Fe, Pb, La and other insoluble elements in


2017 ◽  
Vol 21 (11) ◽  
pp. 5725-5746 ◽  
Author(s):  
Vladimir P. Shevchenko ◽  
Oleg S. Pokrovsky ◽  
Sergey N. Vorobyev ◽  
Ivan V. Krickov ◽  
Rinat M. Manasypov ◽  
...  

Abstract. In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64–68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.


2016 ◽  
Author(s):  
Matthew Costa ◽  
◽  
Carley M. Cavanaugh ◽  
Oluyinka Oyewumi

Author(s):  
Emily Silva ◽  
Shaodan Huang ◽  
Joy Lawrence ◽  
Marco A.G. Martins ◽  
Jing Li ◽  
...  

Fuel ◽  
2014 ◽  
Vol 129 ◽  
pp. 292-313 ◽  
Author(s):  
Stanislav V. Vassilev ◽  
Christina G. Vassileva ◽  
David Baxter

Sign in / Sign up

Export Citation Format

Share Document