scholarly journals Understanding and seasonal forecasting of hydrological drought in the anthropocene

Author(s):  
Xing Yuan ◽  
Miao Zhang ◽  
Linying Wang

Abstract. Hydrological drought is not only caused by natural hydro-climate variability, but can also be directly altered by human interventions including reservoir operation, irrigation and groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the anthropocene are grand challenges due to complicated interactions among climate, hydrology and human. In this paper, five decades (1961–2010) of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in North China. It is found that human interventions increase the nonlinear response of hydrological drought to the meteorological drought, and increase the response time especially during rainy seasons. Due to large water consumptions over the middle and lower reaches, there are two to four-fold increases in the hydrological drought frequency and up to six-fold increases in the drought severity, the drought duration increases by 12–83 %, and the drought onset becomes earlier. A set of 29-year (1982–2010) hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate–model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier Skill Score of 11 %–26 % against the latter for the probabilistic hydrological drought forecasting. In the anthropocene, the skill for both approaches increases due to dominant influence of human interventions that have been implicitly incorporated by the hydrological post-processing, while the difference between two predictions decreases. This suggests that human interventions can outweigh the climate variability for the hydrological drought forecasting in the anthropocene, and the predictability for human interventions needs more attention.

2017 ◽  
Vol 21 (11) ◽  
pp. 5477-5492 ◽  
Author(s):  
Xing Yuan ◽  
Miao Zhang ◽  
Linying Wang ◽  
Tian Zhou

Abstract. Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961–2010) of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118–262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21–99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982–2010) hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11–26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly incorporated by the hydrological post-processing, while the difference between the two predictions decreases. This suggests that human interventions can outweigh the climate variability for the hydrological drought forecasting in the Anthropocene, and the predictability for human interventions needs more attention.


2021 ◽  
pp. 1-44
Author(s):  
Yuqing Zhang ◽  
Qinglong You ◽  
Guangxiong Mao ◽  
Changchun Chen ◽  
Xin Li ◽  
...  

AbstractIt is essential to assess flash drought risk based on a reliable flash drought intensity (severity) index incorporating comprehensive information of the rapid decline (“flash”) in soil moisture towards drought conditions and soil moisture thresholds belonging to the “drought” category. In this study, we used the Gan River Basin as an example to define a flash drought intensity index that can be calculated for individual time steps (pentads) during a flash drought period over a given grid (or station). The severity of a complete flash drought event is the sum of the intensity values during the flash drought. We explored the spatial and temporal characteristics of flash droughts with different grades based on their respective severities. The results show that decreases in total cloud cover, precipitation, and relative humidity, as well as increases in 500 hPa geopotential height, convective inhibition, temperature, vapour pressure deficit, and wind speed can create favorable conditions for the occurrence of flash droughts. Although flash droughts are relatively frequent in the central and southern parts of the basin, the severity is relatively high in the northern part of the basin due to longer duration. Flash drought severity shows a slightly downward trend due to decreases in frequency, duration, and intensity from 1961 to 2018. Extreme and exceptional flash droughts decrease significantly while moderate and severe flash droughts trend slightly upward. Flash drought severity appears to be more affected by the interaction between duration and intensity as the grade increases from mild to severe. The frequency and duration of flash droughts are higher in July to October. The southern part of the basin is more prone to moderate and severe flash droughts, while the northern parts of the basin are more vulnerable to extreme and exceptional flash droughts due to longer durations and greater severities than other parts. Moderate, severe, extreme, and exceptional flash droughts occurred approximately every 3-6, 5-15, 10-50, and 30-200 year intervals, respectively, based on the copula analysis.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2390 ◽  
Author(s):  
Sun ◽  
Zhang ◽  
Yao ◽  
Wen

: Hydrological droughts were characterized using the run-length theory and the AIC (Akaike information criterion) techniques were accepted to evaluate the modeling performance of nine probability functions. In addition, the copula functions were used to describe joint probability behaviors of drought duration and drought severity for the major tributaries of the Huai River Basin (HRB) which is located in the transitional zone between humid and semi-humid climates. The results indicated that: (1) the frequency of hydrological droughts in the upper HRB is higher than that in the central HRB, while the duration of the hydrological drought is in reverse spatial pattern. The drought frequency across the Shiguan River along the south bank of the HRB is higher than the other two tributaries; (2) generalized Pareto distribution is the appropriate distribution function with the best performance in modelling the drought duration over the HRB; while the Generalized Extreme Value (GEV) distribution can effectively describe the probabilistic properties of the drought severity. Joe copula and Tawn copula functions are the best choices and were used in this study. Given return periods of droughts of <30 years, the droughts in the upper HRB are the longest, and the shortest are in the central HRB; (3) the frequency of droughts along the mainstream of the HRB is higher than tributaries of the HRB. However, concurrence probability of droughts along the mainstream of the HRB is lower than the tributaries of the HRB. The drought resistance capacity of HRB has been significantly improved, effectively reducing the impact of hydrological drought on crops after 2010.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiyong Wu ◽  
Heng Xiao ◽  
Guihua Lu ◽  
Jinming Chen

The water resources in the Yellow River basin (YRB) are vital to social and economic development in North and Northwest China. The basin has a marked continental monsoon climate and its water resources are especially vulnerable to climate change. Projected runoff in the basin for the period from 2001 to 2030 was simulated using the variable infiltration capacity (VIC) macroscale hydrology model. VIC was first calibrated using observations and then was driven by the precipitation and temperature projected by the RegCM3 high-resolution regional climate model under the IPCC scenario A2. Results show that, under the scenario A2, the mean annual temperature of the basin could increase by 1.6°C, while mean annual precipitation could decrease by 2.6%. There could be an 11.6% reduction in annual runoff in the basin according to the VIC projection. However, there are marked regional variations in these climate change impacts. Reductions of 13.6%, 25.7%, and 24.6% could be expected in the regions of Hekouzhen to Longmen, Longmen to Sanmenxia, and Sanmenxia to Huayuankou, respectively. Our study suggests that the condition of water resources in the YRB could become more severe in the period from 2001 to 2030 under the scenario A2.


2019 ◽  
Vol 577 ◽  
pp. 123942 ◽  
Author(s):  
Zhenxin Bao ◽  
Jianyun Zhang ◽  
Guoqing Wang ◽  
Qiuwen Chen ◽  
Tiesheng Guan ◽  
...  

2016 ◽  
Vol 22 (4) ◽  
pp. 595-608 ◽  
Author(s):  
Xiao-jun Wang ◽  
Jian-yun Zhang ◽  
Shahid Shamsuddin ◽  
Ru-lin Oyang ◽  
Tie-sheng Guan ◽  
...  

2013 ◽  
Vol 726-731 ◽  
pp. 3480-3485
Author(s):  
Jian Liu ◽  
Jian Qing Zhai ◽  
Hui Tao ◽  
Xu Chun Ye

The study explored global climate change influence on water resources in Yellow River basin. A HBV hydrological model was developed to simulate the rainfall-runoff relationship at the region. Importing the CCLM climate model data, runoff at Lijin station was obtained in 2000-2039. The results indicate: (1) the annual average runoff depth is 1213mm, runoff in summer is larger than in spring,autumn and winter. The water resources decrease in three months (March, April and Jun) and increase in other months. (2) for inter-annual variations, the water resources increases slightly, and increase trend is about 64.8mm/10a. Water resources are insufficient in 200-2016, and rise gradually from 2017. (3) for different decades, the water resources are lack relatively in 2001-2010 and 2011-2020, and the differences are-59.4mm and-76.0mm respectively. While, the water resources in 2021-2030 and 2031-2039 are abundant, and the differences are 90.6mm and 88.8mm respectively.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 689 ◽  
Author(s):  
Xiujie Wang ◽  
Pengfei Zhang ◽  
Lüliu Liu ◽  
Dandan Li ◽  
Yanpeng Wang

Land use and land cover change (LUCC) and water resource utilization behavior and policy (WRUBAP) affect the hydrological cycle in different ways. Their effects on streamflow and hydrological balance components were analyzed in the Yiluo River Basin using the delta method and the Soil and Water Assessment Tool (SWAT). The multivariable (runoff and actual evapotranspiration) calibration and validation method was used to reduce model uncertainty. LUCC impact on hydrological balance components (1976–2015) was evaluated through comparison of simulated paired land use scenarios. WRUBAP impact on runoff was assessed by comparing natural (simulated) and observed runoff. It showed that urban area reduction led to decreased groundwater, but increased surface runoff and increased water area led to increased evaporation. LUCC impact on annual runoff was found limited; for instance, the difference under the paired scenarios was <1 mm. Observed runoff was 34.7–144.1% greater than natural runoff during November–June because of WRUBAP. The effect of WRUBAP on wet season runoff regulation was limited before the completion of the Guxian Reservoir, whereas WRUBAP caused a reduction in natural runoff of 21.6–35.0% during the wet season (July–October) after its completion. The results suggest that WRUBAP has greater influence than LUCC on runoff in the Yiluo River Basin. Based on existing drought mitigation measures, interbasin water transfer measures and deep groundwater exploitation could reduce the potential for drought attributable to predicted future climate extremes. In addition to reservoir regulation, conversion of farmland to forestry in the upstream watershed could also reduce flood risk.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1298 ◽  
Author(s):  
Fei Wang ◽  
Zongmin Wang ◽  
Haibo Yang ◽  
Yong Zhao ◽  
Zezhong Zhang ◽  
...  

Drought is a complex natural phenomenon that occurs throughout the world. Analyzing and grasping the occurrence and development of drought events is of great practical significance for preventing drought disasters. In this study, the Standardized Precipitation Evapotranspiration Index (SPEI) was adopted as a drought index to quantitatively analyze the temporal evolution, spatial distribution, and gridded trend characteristics of drought in the Yellow River basin (YRB) during 1961–2015. The duration and severity of drought events were extracted based on run theory, and the best-fitted Copula models were used to combine the drought duration and severity to analyze the drought return period. The results indicated that: (1) the drought showed a non-significant upward trend in the YRB from 1961 to 2015, and drought events became more serious after the 1990s; (2) the month and season with the most serious drought was June and summer, with an average SPEI value of −0.94 and −0.70; (3) the seasons with an increasing drought trend were spring, summer, and autumn; (4) the most serious drought lasted for 16 months in the YRB, with drought severity of 12.44 and drought return period of 115.18 years; and (5) Frank-copula was found to be the best-fitted one in the YRB. The research results can reveal the evolution characteristics of drought, and provide reference and basis for drought resistance and reduction in the YRB.


Sign in / Sign up

Export Citation Format

Share Document