Review of ‘Seasonal streamflow forecasts for Europe – I. Hindcast verification with pseudo- and real observations’ by W. Greuell et al.

2017 ◽  
Author(s):  
Christel Prudhomme
2017 ◽  
Vol 21 (3) ◽  
pp. 1573-1591 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger ◽  
Charles Perrin

Abstract. Many fields, such as drought-risk assessment or reservoir management, can benefit from long-range streamflow forecasts. Climatology has long been used in long-range streamflow forecasting. Conditioning methods have been proposed to select or weight relevant historical time series from climatology. They are often based on general circulation model (GCM) outputs that are specific to the forecast date due to the initialisation of GCMs on current conditions. This study investigates the impact of conditioning methods on the performance of seasonal streamflow forecasts. Four conditioning statistics based on seasonal forecasts of cumulative precipitation and the standardised precipitation index were used to select relevant traces within historical streamflows and precipitation respectively. This resulted in eight conditioned streamflow forecast scenarios. These scenarios were compared to the climatology of historical streamflows, the ensemble streamflow prediction approach and the streamflow forecasts obtained from ECMWF System 4 precipitation forecasts. The impact of conditioning was assessed in terms of forecast sharpness (spread), reliability, overall performance and low-flow event detection. Results showed that conditioning past observations on seasonal precipitation indices generally improves forecast sharpness, but may reduce reliability, with respect to climatology. Conversely, conditioned ensembles were more reliable but less sharp than streamflow forecasts derived from System 4 precipitation. Forecast attributes from conditioned and unconditioned ensembles are illustrated for a case of drought-risk forecasting: the 2003 drought in France. In the case of low-flow forecasting, conditioning results in ensembles that can better assess weekly deficit volumes and durations over a wider range of lead times.


2016 ◽  
Author(s):  
Louise Crochemore ◽  
M.-H. Ramos ◽  
Florian Pappenberger

Abstract. Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful, which has the potential to benefit streamflow forecasting. Seasonal streamflow forecasts can help to take anticipatory measures for a range of applications, such as water supply or hydropower reservoir operation and drought risk management. This study assesses the skill of seasonal precipitation and streamflow forecasts in France to provide insights into the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. We apply eight variants of bias correction approaches to the precipitation forecasts prior to generating the streamflow forecasts. The approaches are based on the linear scaling and the distribution mapping methods. A daily hydrological model is applied at the catchment scale to transform precipitation into streamflow. We then evaluate the skill of raw (without bias correction) and bias corrected precipitation and streamflow ensemble forecasts in sixteen catchments in France. The skill of the ensemble forecasts is assessed in reliability, sharpness, accuracy, and overall performance. A reference prediction system, based on historical observed precipitation and catchment initial conditions at the time of forecast (i.e., ESP method), is used as benchmark in the computation of the skill. The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are often more skilful than the conventional ESP method in terms of sharpness. However, they are not significantly better in terms of reliability. Forecast skill is generally improved when applying bias correction. Two bias correction methods show the best performance for the studied catchments, each method being more successful in improving specific attributes of the forecasts: the simple linear scaling of monthly values contribute mainly to increasing forecast sharpness and accuracy, while the empirical distribution mapping of daily values is successful in improving forecast reliability.


2021 ◽  
Author(s):  
Ilias Pechlivanidis ◽  
Louise Crochemore ◽  
Marc Girons Lopez

<p>The scientific community has made significant progress towards improving the skill of hydrological forecasts; however, most investigations have normally been conducted at single or in a limited number of catchments. Such an approach is indeed valuable for detailed process investigation and therefore to understand the local conditions that affect forecast skill, but it is limited when it comes to scaling up the underlying hydrometeorological hypotheses. To advance knowledge on the drivers that control the quality and skill of hydrological forecasts, much can be gained by comparative analyses and from the availability of statistically significant samples. Large-scale modelling (at national, continental or global scales) can complement the in-depth knowledge from single catchment modelling by encompassing many river systems that represent a breadth of physiographic and climatic conditions. In addition to large sample sizes which cover a gradient in terms of climatology, scale and hydrological regime, the use of machine learning techniques can contribute to the identification of emerging spatiotemporal patterns leading to forecast skill attribution to different regional physiographic characteristics.</p><p>Here, we draw on two seasonal hydrological forecast skill investigations that were conducted at the national and continental scales, providing results for more than 36,000 basins in Sweden and Europe. Due to the large generated samples, we are capable of demonstrating that the quality of seasonal streamflow forecasts can be clustered and regionalized, based on a priori knowledge of the local hydroclimatic conditions. We show that the quality of seasonal streamflow forecasts is linked to physiographic and hydroclimatic descriptors, and that the relative importance of these descriptors varies with initialization month and lead time. In our samples, hydrological similarity, temperature, precipitation, evaporative index, and precipitation forecast biases are strongly linked to the quality of streamflow forecasts. This way, while seasonal river flow can generally be well predicted in river systems with slow hydrological responses, predictability tends to be poor in cold and semiarid climates in which river systems respond immediately to precipitation signals.</p>


2020 ◽  
Vol 56 (5) ◽  
pp. 882-902
Author(s):  
Colin A. Penn ◽  
David W. Clow ◽  
Graham A. Sexstone ◽  
Sheila F. Murphy

Author(s):  
Ilias Pechlivanidis ◽  
Louise Crochemore ◽  
Thomas Bosshard

<p>Streamflow information for the months ahead is of great value to existing decision-making practices, particularly to those affected by the vagaries of the climate and who would benefit from better understanding and managing climate-related risks. Despite the large effort, there is still limited knowledge of the key drivers controlling the quality of the seasonal streamflow forecasts. In this investigation, we show that the seasonal streamflow predictability can be clustered, and hence regionalised, based on a priori knowledge of local hydro-climatic conditions. To reach these conclusions we analyse the seasonal forecasts of streamflow volumes across about 35400 basins in Europe, which vary in terms of climatology, scale and hydrological regime. We then link the forecast quality to various descriptors including physiography, hydro-climatic characteristics and meteorological biases. This allows the identification of the key drivers along a strong hydro-climatic gradient. Results show that, as expected, the seasonal streamflow predictability varies geographically and seasonally with acceptable values for the first lead months. In addition, the predictability deteriorates with increasing lead months particularly in the winter months. Nevertheless, we show that the forecast quality is well correlated to a set of drivers, which vary depending on the initialization month. The forecast quality of seasonal streamflow volumes is strongly dependent on the basin’s hydrological regime, with quickly reacting basins (of low river memory) showing limited predictability. On the contrary, snow and/or baseflow dominated regions with long recessions (and hence high river memory) show high streamflow predictability. Finally, climatology and precipitation biases are also strongly related to streamflow predictability, highlighting the importance of developing robust bias-adjustment methods.</p>


2017 ◽  
Author(s):  
Louise Arnal ◽  
Hannah L. Cloke ◽  
Elisabeth Stephens ◽  
Fredrik Wetterhall ◽  
Christel Prudhomme ◽  
...  

Abstract. This paper presents a Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts, benchmarked against the Ensemble Streamflow Prediction (ESP) forecasting approach. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only. However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to seven months of lead time, for certain months within a season. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making. Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for most of Europe. Patterns in the EFAS seasonal streamflow hindcasts skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim to improve climate-model based seasonal streamflow forecasting.


Sign in / Sign up

Export Citation Format

Share Document