scholarly journals Seasonal streamflow forecasting by conditioning climatology with precipitation indices

2017 ◽  
Vol 21 (3) ◽  
pp. 1573-1591 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger ◽  
Charles Perrin

Abstract. Many fields, such as drought-risk assessment or reservoir management, can benefit from long-range streamflow forecasts. Climatology has long been used in long-range streamflow forecasting. Conditioning methods have been proposed to select or weight relevant historical time series from climatology. They are often based on general circulation model (GCM) outputs that are specific to the forecast date due to the initialisation of GCMs on current conditions. This study investigates the impact of conditioning methods on the performance of seasonal streamflow forecasts. Four conditioning statistics based on seasonal forecasts of cumulative precipitation and the standardised precipitation index were used to select relevant traces within historical streamflows and precipitation respectively. This resulted in eight conditioned streamflow forecast scenarios. These scenarios were compared to the climatology of historical streamflows, the ensemble streamflow prediction approach and the streamflow forecasts obtained from ECMWF System 4 precipitation forecasts. The impact of conditioning was assessed in terms of forecast sharpness (spread), reliability, overall performance and low-flow event detection. Results showed that conditioning past observations on seasonal precipitation indices generally improves forecast sharpness, but may reduce reliability, with respect to climatology. Conversely, conditioned ensembles were more reliable but less sharp than streamflow forecasts derived from System 4 precipitation. Forecast attributes from conditioned and unconditioned ensembles are illustrated for a case of drought-risk forecasting: the 2003 drought in France. In the case of low-flow forecasting, conditioning results in ensembles that can better assess weekly deficit volumes and durations over a wider range of lead times.

2016 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger ◽  
Charles Perrin

Abstract. Many fields such as drought risk assessment or reservoir management can benefit from long-range streamflow forecasts. The simplest way to make probabilistic streamflow forecasts can be to use historical streamflow time series, if available. Another approach is to use ensemble climate scenarios as input to a hydrological model. Climatology (i.e. time series of climate conditions recorded over a long time period) has long been used in long-range streamflow forecasting. However, in the last decade, the use of general circulation model (GCM) outputs as input to hydrological models has developed. While precipitation climatology and historical streamflows offer reliable ensembles, forecasts based on GCM outputs can offer sharper ensembles, partly due to the initialisation of GCMs and hydrological models on current conditions. This study proposes to condition historical data based on GCM precipitation forecasts to get the most out of both data sources and improve seasonal streamflow forecasting in France. Four conditioning statistics based on ECMWF System 4 forecasts of cumulative precipitation and of the Standardized Precipitation Index (SPI) were used to select traces within historical streamflows and historical precipitations. The four conditioned precipitation scenarios were used as input to the GR6J hydrological model to obtain eight conditioned streamflow forecast scenarios. These streamflow scenarios were compared to three references: an ensemble based on historical streamflows, the widespread Ensemble Streamflow Prediction (ESP) ensemble, and System 4 precipitation forecasts. These ensembles were evaluated based on their sharpness, reliability and overall performance. An overall comparison of forecast ensembles showed that conditioning past observations based on the three-month Standardized Precipitation Index (SPI3) improved the sharpness of ensembles based on historical data, while maintaining a good reliability. An evaluation of forecast ensembles for low-flow forecasting showed that the SPI3-conditioned ensembles provided reliable forecasts of low-flow duration and deficit volume based on the 80th exceedance percentile. Last, drought risk forecasting was illustrated for the 2003 drought.


2016 ◽  
Author(s):  
Louise Crochemore ◽  
M.-H. Ramos ◽  
Florian Pappenberger

Abstract. Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful, which has the potential to benefit streamflow forecasting. Seasonal streamflow forecasts can help to take anticipatory measures for a range of applications, such as water supply or hydropower reservoir operation and drought risk management. This study assesses the skill of seasonal precipitation and streamflow forecasts in France to provide insights into the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. We apply eight variants of bias correction approaches to the precipitation forecasts prior to generating the streamflow forecasts. The approaches are based on the linear scaling and the distribution mapping methods. A daily hydrological model is applied at the catchment scale to transform precipitation into streamflow. We then evaluate the skill of raw (without bias correction) and bias corrected precipitation and streamflow ensemble forecasts in sixteen catchments in France. The skill of the ensemble forecasts is assessed in reliability, sharpness, accuracy, and overall performance. A reference prediction system, based on historical observed precipitation and catchment initial conditions at the time of forecast (i.e., ESP method), is used as benchmark in the computation of the skill. The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are often more skilful than the conventional ESP method in terms of sharpness. However, they are not significantly better in terms of reliability. Forecast skill is generally improved when applying bias correction. Two bias correction methods show the best performance for the studied catchments, each method being more successful in improving specific attributes of the forecasts: the simple linear scaling of monthly values contribute mainly to increasing forecast sharpness and accuracy, while the empirical distribution mapping of daily values is successful in improving forecast reliability.


2019 ◽  
Vol 20 (4) ◽  
pp. 731-749 ◽  
Author(s):  
Dongyue Li ◽  
Dennis P. Lettenmaier ◽  
Steven A. Margulis ◽  
Konstantinos Andreadis

Abstract Previous studies have shown limited success in improving streamflow forecasting for snow-dominated watersheds using physically based models, primarily due to the lack of reliable snow water equivalent (SWE) information. Here we use a hindcasting approach to evaluate the potential benefit that a high-resolution, spatiotemporally continuous, and accurate SWE reanalysis product would have on the seasonal streamflow forecast in the snow-dominated Sierra Nevada mountains of California if such an SWE product were available in real time. We tested the efficacy of a physically based ensemble streamflow prediction (ESP) framework when initialized with the reanalysis SWE. We reinitialized the SWE over the Sierra Nevada at the time when the Sierra Nevada had domain-wide annual maximum SWE for each year in 1985–2015, and on 1 February of the driest years within the same period. The early season forecasts on 1 February provide valuable lead time for mitigating the impact of drought. In both experiments, initializing the ESP with the reanalysis SWE reduced the seasonal streamflow forecast errors; compared with existing operational statistical forecasts, the peak-annual SWE insertion and the 1 February SWE insertion reduced the overall root-mean-square error of the seasonal streamflow forecasts by 13% and 23%, respectively, over the 13 major rivers draining the Sierra Nevada. The benefits of the reanalysis SWE insertion are more pronounced in areas with greater snow accumulation, while the complex snow and runoff-generation processes in low-elevation areas impede the forecasting skill improvement through SWE reinitialization alone.


2016 ◽  
Vol 20 (9) ◽  
pp. 3601-3618 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger

Abstract. Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful, which has the potential to benefit streamflow forecasting. Seasonal streamflow forecasts can help to take anticipatory measures for a range of applications, such as water supply or hydropower reservoir operation and drought risk management. This study assesses the skill of seasonal precipitation and streamflow forecasts in France to provide insights into the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. We apply eight variants of bias correction approaches to the precipitation forecasts prior to generating the streamflow forecasts. The approaches are based on the linear scaling and the distribution mapping methods. A daily hydrological model is applied at the catchment scale to transform precipitation into streamflow. We then evaluate the skill of raw (without bias correction) and bias-corrected precipitation and streamflow ensemble forecasts in 16 catchments in France. The skill of the ensemble forecasts is assessed in reliability, sharpness, accuracy and overall performance. A reference prediction system, based on historical observed precipitation and catchment initial conditions at the time of forecast (i.e. ESP method) is used as benchmark in the computation of the skill. The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are often more skilful than the conventional ESP method in terms of sharpness. However, they are not significantly better in terms of reliability. Forecast skill is generally improved when applying bias correction. Two bias correction methods show the best performance for the studied catchments, each method being more successful in improving specific attributes of the forecasts: the simple linear scaling of monthly values contributes mainly to increasing forecast sharpness and accuracy, while the empirical distribution mapping of daily values is successful in improving forecast reliability.


2021 ◽  
Author(s):  
Ilias Pechlivanidis ◽  
Louise Crochemore ◽  
Marc Girons Lopez

<p>The scientific community has made significant progress towards improving the skill of hydrological forecasts; however, most investigations have normally been conducted at single or in a limited number of catchments. Such an approach is indeed valuable for detailed process investigation and therefore to understand the local conditions that affect forecast skill, but it is limited when it comes to scaling up the underlying hydrometeorological hypotheses. To advance knowledge on the drivers that control the quality and skill of hydrological forecasts, much can be gained by comparative analyses and from the availability of statistically significant samples. Large-scale modelling (at national, continental or global scales) can complement the in-depth knowledge from single catchment modelling by encompassing many river systems that represent a breadth of physiographic and climatic conditions. In addition to large sample sizes which cover a gradient in terms of climatology, scale and hydrological regime, the use of machine learning techniques can contribute to the identification of emerging spatiotemporal patterns leading to forecast skill attribution to different regional physiographic characteristics.</p><p>Here, we draw on two seasonal hydrological forecast skill investigations that were conducted at the national and continental scales, providing results for more than 36,000 basins in Sweden and Europe. Due to the large generated samples, we are capable of demonstrating that the quality of seasonal streamflow forecasts can be clustered and regionalized, based on a priori knowledge of the local hydroclimatic conditions. We show that the quality of seasonal streamflow forecasts is linked to physiographic and hydroclimatic descriptors, and that the relative importance of these descriptors varies with initialization month and lead time. In our samples, hydrological similarity, temperature, precipitation, evaporative index, and precipitation forecast biases are strongly linked to the quality of streamflow forecasts. This way, while seasonal river flow can generally be well predicted in river systems with slow hydrological responses, predictability tends to be poor in cold and semiarid climates in which river systems respond immediately to precipitation signals.</p>


Author(s):  
Ilias Pechlivanidis ◽  
Louise Crochemore ◽  
Thomas Bosshard

<p>Streamflow information for the months ahead is of great value to existing decision-making practices, particularly to those affected by the vagaries of the climate and who would benefit from better understanding and managing climate-related risks. Despite the large effort, there is still limited knowledge of the key drivers controlling the quality of the seasonal streamflow forecasts. In this investigation, we show that the seasonal streamflow predictability can be clustered, and hence regionalised, based on a priori knowledge of local hydro-climatic conditions. To reach these conclusions we analyse the seasonal forecasts of streamflow volumes across about 35400 basins in Europe, which vary in terms of climatology, scale and hydrological regime. We then link the forecast quality to various descriptors including physiography, hydro-climatic characteristics and meteorological biases. This allows the identification of the key drivers along a strong hydro-climatic gradient. Results show that, as expected, the seasonal streamflow predictability varies geographically and seasonally with acceptable values for the first lead months. In addition, the predictability deteriorates with increasing lead months particularly in the winter months. Nevertheless, we show that the forecast quality is well correlated to a set of drivers, which vary depending on the initialization month. The forecast quality of seasonal streamflow volumes is strongly dependent on the basin’s hydrological regime, with quickly reacting basins (of low river memory) showing limited predictability. On the contrary, snow and/or baseflow dominated regions with long recessions (and hence high river memory) show high streamflow predictability. Finally, climatology and precipitation biases are also strongly related to streamflow predictability, highlighting the importance of developing robust bias-adjustment methods.</p>


2007 ◽  
Vol 363 (1501) ◽  
pp. 2249-2258 ◽  
Author(s):  
Ming-ko Woo ◽  
Robin Thorne ◽  
Kit Szeto ◽  
Daqing Yang

The boreal region has a subarctic climate that is subject to considerable inter-annual variability and is prone to impacts of future warming. Climate influences the seasonal streamflow regime which typically exhibits winter low flow, terminated by spring freshet, followed by summer flow recession. The effects of climatic variation on streamflow cannot be isolated with confidence but the impact of human regulation of rivers can greatly alter the natural flow rhythm, changing the timing of flow to suit human demands. The effect of scenario climate change on streamflow is explored through hydrological simulation. Example of a Canadian basin under warming scenario suggests that winter flow will increase, spring freshet dates will advance but peak flow will decline, as will summer flow due to enhanced evaporation. While this simulation was site specific, the results are qualitatively applicable to other boreal areas. Future studies should consider the role of human activities as their impacts on streamflow will be more profound than those due to climate change.


2017 ◽  
Author(s):  
Louise Arnal ◽  
Hannah L. Cloke ◽  
Elisabeth Stephens ◽  
Fredrik Wetterhall ◽  
Christel Prudhomme ◽  
...  

Abstract. This paper presents a Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts, benchmarked against the Ensemble Streamflow Prediction (ESP) forecasting approach. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only. However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to seven months of lead time, for certain months within a season. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making. Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for most of Europe. Patterns in the EFAS seasonal streamflow hindcasts skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim to improve climate-model based seasonal streamflow forecasting.


2014 ◽  
Vol 15 (6) ◽  
pp. 2470-2483 ◽  
Author(s):  
Tushar Sinha ◽  
A. Sankarasubramanian ◽  
Amirhossein Mazrooei

Abstract Despite considerable progress in developing real-time climate forecasts, most studies have evaluated the potential in seasonal streamflow forecasting based on ensemble streamflow prediction (ESP) methods, utilizing only climatological forcings while ignoring general circulation model (GCM)-based climate forecasts. The primary limitation in using GCM forecasts is their coarse resolution, which requires spatiotemporal downscaling to implement land surface models. Consequently, multiple sources of errors are introduced in developing real-time streamflow forecasts utilizing GCM forecasts. A set of error decomposition metrics is provided to address the following questions: 1) How are errors in monthly streamflow forecasts attributed to various sources such as temporal disaggregation, spatial downscaling, imprecise initial hydrologic conditions (IHCs), climatological forcings, and imprecise forecasts? and 2) How do these errors propagate with lead time over different seasons? A calibrated Variable Infiltration Capacity model is used over the Apalachicola River at Chattahoochee in the southeastern United States. The model is forced with a combination of daily precipitation forcings (temporally disaggregated observed precipitation, spatially downscaled and temporally disaggregated observed precipitation, ESP, ECHAM4.5 forecasts, and observed) and IHCs [simulated and climatological ensemble reverse ESP (RESP)] but with observed air temperature and wind speed at ⅛° resolution. Then, errors in forecasting monthly streamflow at up to a 3-month lead time are decomposed by comparing the forecasted streamflow to simulated streamflow under observed forcings. Results indicate that the errors due to temporal disaggregation are much higher than the spatial downscaling errors. During winter and early spring, the increasing order of errors at a 1-month lead time is spatial downscaling, model, temporal disaggregation, RESP, large-scale precipitation forecasts, and ESP.


2020 ◽  
Vol 24 (7) ◽  
pp. 3851-3870
Author(s):  
Alexander Kaune ◽  
Faysal Chowdhury ◽  
Micha Werner ◽  
James Bennett

Abstract. The area to be cropped in irrigation districts needs to be planned according to the allocated water, which in turn is a function of the available water resource. Initially conservative estimates of future (in)flows in rivers and reservoirs may lead to unnecessary reduction of the water allocated. Though water allocations may be revised as the season progresses, inconsistency in allocation is undesirable to farmers as they may then not be able to use that water, leading to an opportunity cost in agricultural production. We assess the benefit of using reservoir inflow estimates derived from seasonal forecast datasets to improve water allocation decisions. A decision model is developed to emulate the feedback loop between simulated reservoir storage and water allocations to irrigated crops and is evaluated using inflow forecasts generated with the Forecast Guided Stochastic Scenarios (FoGSS) model, a 12-month ensemble streamflow forecasting system. Two forcings are used to generate the forecasts: ensemble streamflow prediction – ESP (historical rainfall) – and POAMA (calibrated rainfall forecasts from the POAMA climate prediction system). We evaluate the approach in the Murrumbidgee basin in Australia, comparing water allocations obtained with an expected reservoir inflow from FoGSS against the allocations obtained with the currently used conservative estimate based on climatology as well as against allocations obtained using observed inflows (perfect information). The inconsistency in allocated water is evaluated by determining the total changes in allocated water made every 15 d from the initial allocation at the start of the water year to the end of the irrigation season, including both downward and upward revisions of allocations. Results show that the inconsistency due to upward revisions in allocated water is lower when using the forecast datasets (POAMA and ESP) compared to the conservative inflow estimates (reference), which is beneficial to the planning of cropping areas by farmers. Overconfidence can, however, lead to an increase in undesirable downward revisions. This is more evident for dry years than for wet years. Over the 28 years for which allocation decisions are evaluated, we find that the accuracy of the available water estimates using the forecast ensemble improves progressively during the water year, especially 1.5 months before the start of the cropping season in November. This is significant as it provides farmers with additional time to make key decisions on planting. Our results show that seasonal streamflow forecasts can provide benefit in informing water allocation policies, particularly by earlier establishing final water allocations to farmers in the irrigation season. This allows them to plan better and use water allocated more efficiently.


Sign in / Sign up

Export Citation Format

Share Document