scholarly journals Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts

Author(s):  
Louise Crochemore ◽  
M.-H. Ramos ◽  
Florian Pappenberger

Abstract. Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful, which has the potential to benefit streamflow forecasting. Seasonal streamflow forecasts can help to take anticipatory measures for a range of applications, such as water supply or hydropower reservoir operation and drought risk management. This study assesses the skill of seasonal precipitation and streamflow forecasts in France to provide insights into the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. We apply eight variants of bias correction approaches to the precipitation forecasts prior to generating the streamflow forecasts. The approaches are based on the linear scaling and the distribution mapping methods. A daily hydrological model is applied at the catchment scale to transform precipitation into streamflow. We then evaluate the skill of raw (without bias correction) and bias corrected precipitation and streamflow ensemble forecasts in sixteen catchments in France. The skill of the ensemble forecasts is assessed in reliability, sharpness, accuracy, and overall performance. A reference prediction system, based on historical observed precipitation and catchment initial conditions at the time of forecast (i.e., ESP method), is used as benchmark in the computation of the skill. The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are often more skilful than the conventional ESP method in terms of sharpness. However, they are not significantly better in terms of reliability. Forecast skill is generally improved when applying bias correction. Two bias correction methods show the best performance for the studied catchments, each method being more successful in improving specific attributes of the forecasts: the simple linear scaling of monthly values contribute mainly to increasing forecast sharpness and accuracy, while the empirical distribution mapping of daily values is successful in improving forecast reliability.

2016 ◽  
Vol 20 (9) ◽  
pp. 3601-3618 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger

Abstract. Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful, which has the potential to benefit streamflow forecasting. Seasonal streamflow forecasts can help to take anticipatory measures for a range of applications, such as water supply or hydropower reservoir operation and drought risk management. This study assesses the skill of seasonal precipitation and streamflow forecasts in France to provide insights into the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. We apply eight variants of bias correction approaches to the precipitation forecasts prior to generating the streamflow forecasts. The approaches are based on the linear scaling and the distribution mapping methods. A daily hydrological model is applied at the catchment scale to transform precipitation into streamflow. We then evaluate the skill of raw (without bias correction) and bias-corrected precipitation and streamflow ensemble forecasts in 16 catchments in France. The skill of the ensemble forecasts is assessed in reliability, sharpness, accuracy and overall performance. A reference prediction system, based on historical observed precipitation and catchment initial conditions at the time of forecast (i.e. ESP method) is used as benchmark in the computation of the skill. The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are often more skilful than the conventional ESP method in terms of sharpness. However, they are not significantly better in terms of reliability. Forecast skill is generally improved when applying bias correction. Two bias correction methods show the best performance for the studied catchments, each method being more successful in improving specific attributes of the forecasts: the simple linear scaling of monthly values contributes mainly to increasing forecast sharpness and accuracy, while the empirical distribution mapping of daily values is successful in improving forecast reliability.


2017 ◽  
Vol 21 (3) ◽  
pp. 1573-1591 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger ◽  
Charles Perrin

Abstract. Many fields, such as drought-risk assessment or reservoir management, can benefit from long-range streamflow forecasts. Climatology has long been used in long-range streamflow forecasting. Conditioning methods have been proposed to select or weight relevant historical time series from climatology. They are often based on general circulation model (GCM) outputs that are specific to the forecast date due to the initialisation of GCMs on current conditions. This study investigates the impact of conditioning methods on the performance of seasonal streamflow forecasts. Four conditioning statistics based on seasonal forecasts of cumulative precipitation and the standardised precipitation index were used to select relevant traces within historical streamflows and precipitation respectively. This resulted in eight conditioned streamflow forecast scenarios. These scenarios were compared to the climatology of historical streamflows, the ensemble streamflow prediction approach and the streamflow forecasts obtained from ECMWF System 4 precipitation forecasts. The impact of conditioning was assessed in terms of forecast sharpness (spread), reliability, overall performance and low-flow event detection. Results showed that conditioning past observations on seasonal precipitation indices generally improves forecast sharpness, but may reduce reliability, with respect to climatology. Conversely, conditioned ensembles were more reliable but less sharp than streamflow forecasts derived from System 4 precipitation. Forecast attributes from conditioned and unconditioned ensembles are illustrated for a case of drought-risk forecasting: the 2003 drought in France. In the case of low-flow forecasting, conditioning results in ensembles that can better assess weekly deficit volumes and durations over a wider range of lead times.


Author(s):  
Ilias Pechlivanidis ◽  
Louise Crochemore ◽  
Thomas Bosshard

<p>Streamflow information for the months ahead is of great value to existing decision-making practices, particularly to those affected by the vagaries of the climate and who would benefit from better understanding and managing climate-related risks. Despite the large effort, there is still limited knowledge of the key drivers controlling the quality of the seasonal streamflow forecasts. In this investigation, we show that the seasonal streamflow predictability can be clustered, and hence regionalised, based on a priori knowledge of local hydro-climatic conditions. To reach these conclusions we analyse the seasonal forecasts of streamflow volumes across about 35400 basins in Europe, which vary in terms of climatology, scale and hydrological regime. We then link the forecast quality to various descriptors including physiography, hydro-climatic characteristics and meteorological biases. This allows the identification of the key drivers along a strong hydro-climatic gradient. Results show that, as expected, the seasonal streamflow predictability varies geographically and seasonally with acceptable values for the first lead months. In addition, the predictability deteriorates with increasing lead months particularly in the winter months. Nevertheless, we show that the forecast quality is well correlated to a set of drivers, which vary depending on the initialization month. The forecast quality of seasonal streamflow volumes is strongly dependent on the basin’s hydrological regime, with quickly reacting basins (of low river memory) showing limited predictability. On the contrary, snow and/or baseflow dominated regions with long recessions (and hence high river memory) show high streamflow predictability. Finally, climatology and precipitation biases are also strongly related to streamflow predictability, highlighting the importance of developing robust bias-adjustment methods.</p>


2017 ◽  
Author(s):  
Louise Arnal ◽  
Hannah L. Cloke ◽  
Elisabeth Stephens ◽  
Fredrik Wetterhall ◽  
Christel Prudhomme ◽  
...  

Abstract. This paper presents a Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts, benchmarked against the Ensemble Streamflow Prediction (ESP) forecasting approach. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only. However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to seven months of lead time, for certain months within a season. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making. Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for most of Europe. Patterns in the EFAS seasonal streamflow hindcasts skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim to improve climate-model based seasonal streamflow forecasting.


2020 ◽  
Author(s):  
Bastian Klein ◽  
Ilias Pechlivanidis ◽  
Louise Arnal ◽  
Louise Crochemore ◽  
Dennis Meissner ◽  
...  

<p>Many sectors, such as hydropower, agriculture, water supply and waterway transport, need information about the possible evolution of meteorological and hydrological conditions in the next weeks and months to optimize their decision processes on a long term. With increasing availability of meteorological seasonal forecasts, hydrological seasonal forecasting systems have been developed all over the world in the last years. Many of them are running in operational mode. On European scale the European Flood Awareness System EFAS and SMHI are operationally providing seasonal streamflow forecasts. In the context of the EU-Horizon2020 project IMPREX additionally a national scale forecasting system for German waterways operated by BfG was available for the analysis of seasonal forecasts from multiple hydrological models.</p><p>Statistical post processing tools could be used to estimate the predictive uncertainty of the forecasted variable from deterministic / ensemble forecasts of a single / multi-model forecasting system. Raw forecasts shouldn’t be used directly by users without statistical post-processing because of various biases. To assess the added potential benefit of the application of a hydrological multi-model ensemble, the forecasting systems from EFAS, SMHI and BfG were forced by re-forecasts of the ECMWF’s Seasonal Forecast System 4 and the resulting seasonal streamflow forecasts have been verified for 24 gauges across Central Europe. Additionally two statistical forecasting methods - Ensemble Model Output Statistics EMOS and Bayesian Model Averaging BMA - have been applied to post-process the forecasts.</p><p>Overall, seasonal flow forecast skill is limited in Central Europe before and after post-processing with a current predictability of 1-2 months. The results of the multi-model analysis indicate that post-processing of raw forecasts is necessary when observations are used as reference. Post-processing improves forecast skill significantly for all gauges, lead times and seasons. The multi-model combination of all models showed the highest skill compared to the skill of the raw forecasts and the skill of the post-processed results of the individual models, i.e. the application of several hydrological models for the same region improves skill, due to the different model strengths.</p>


2016 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger ◽  
Charles Perrin

Abstract. Many fields such as drought risk assessment or reservoir management can benefit from long-range streamflow forecasts. The simplest way to make probabilistic streamflow forecasts can be to use historical streamflow time series, if available. Another approach is to use ensemble climate scenarios as input to a hydrological model. Climatology (i.e. time series of climate conditions recorded over a long time period) has long been used in long-range streamflow forecasting. However, in the last decade, the use of general circulation model (GCM) outputs as input to hydrological models has developed. While precipitation climatology and historical streamflows offer reliable ensembles, forecasts based on GCM outputs can offer sharper ensembles, partly due to the initialisation of GCMs and hydrological models on current conditions. This study proposes to condition historical data based on GCM precipitation forecasts to get the most out of both data sources and improve seasonal streamflow forecasting in France. Four conditioning statistics based on ECMWF System 4 forecasts of cumulative precipitation and of the Standardized Precipitation Index (SPI) were used to select traces within historical streamflows and historical precipitations. The four conditioned precipitation scenarios were used as input to the GR6J hydrological model to obtain eight conditioned streamflow forecast scenarios. These streamflow scenarios were compared to three references: an ensemble based on historical streamflows, the widespread Ensemble Streamflow Prediction (ESP) ensemble, and System 4 precipitation forecasts. These ensembles were evaluated based on their sharpness, reliability and overall performance. An overall comparison of forecast ensembles showed that conditioning past observations based on the three-month Standardized Precipitation Index (SPI3) improved the sharpness of ensembles based on historical data, while maintaining a good reliability. An evaluation of forecast ensembles for low-flow forecasting showed that the SPI3-conditioned ensembles provided reliable forecasts of low-flow duration and deficit volume based on the 80th exceedance percentile. Last, drought risk forecasting was illustrated for the 2003 drought.


2016 ◽  
Author(s):  
Naze Candogan Yossef ◽  
Rens van Beek ◽  
Albrecht Weerts ◽  
Hessel Winsemius ◽  
Marc F. P. Bierkens

Abstract. In this study we assess the skill of seasonal streamflow forecasts with the global hydrological forecasting system FEWS-World which has been set up within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). FEWS-World incorporates the global hydrological model PCR-GLOBWB. We produce ensemble forecasts of monthly discharges for 20 large rivers of the world, with lead times of up to 6 months, forcing the system with bias-corrected seasonal meteorological forecast ensembles from the ECMWF and with probabilistic meteorological ensembles obtained following the ESP procedure. Here, the skill from the ESP ensembles, which contain no actual information on weather, serves as a benchmark to assess the additional skill that may be obtained using ECMWF seasonal forecasts. We use the Brier Score to quantify the skill of the system in forecasting high and low flows, defined as discharges higher than the 75th and lower than the 25th percentiles for a given month respectively. We determine the theoretical skill by comparing the results against model simulations and the actual skill in comparison to discharge observations. We calculate the ratios of actual to theoretical skill in order to quantify the percentage of the theoretical skill that is achieved. The results suggest that the skill of ECMWF S3 forecasts is close to that of the ESP forecasts. While better meteorological forecasts could potentially lead to an improvement in hydrological forecasts, this cannot be achieved yet using the ECMWF S3 dataset.


2018 ◽  
Vol 22 (4) ◽  
pp. 2057-2072 ◽  
Author(s):  
Louise Arnal ◽  
Hannah L. Cloke ◽  
Elisabeth Stephens ◽  
Fredrik Wetterhall ◽  
Christel Prudhomme ◽  
...  

Abstract. This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate-model-based seasonal streamflow forecasting.


2019 ◽  
Vol 20 (4) ◽  
pp. 731-749 ◽  
Author(s):  
Dongyue Li ◽  
Dennis P. Lettenmaier ◽  
Steven A. Margulis ◽  
Konstantinos Andreadis

Abstract Previous studies have shown limited success in improving streamflow forecasting for snow-dominated watersheds using physically based models, primarily due to the lack of reliable snow water equivalent (SWE) information. Here we use a hindcasting approach to evaluate the potential benefit that a high-resolution, spatiotemporally continuous, and accurate SWE reanalysis product would have on the seasonal streamflow forecast in the snow-dominated Sierra Nevada mountains of California if such an SWE product were available in real time. We tested the efficacy of a physically based ensemble streamflow prediction (ESP) framework when initialized with the reanalysis SWE. We reinitialized the SWE over the Sierra Nevada at the time when the Sierra Nevada had domain-wide annual maximum SWE for each year in 1985–2015, and on 1 February of the driest years within the same period. The early season forecasts on 1 February provide valuable lead time for mitigating the impact of drought. In both experiments, initializing the ESP with the reanalysis SWE reduced the seasonal streamflow forecast errors; compared with existing operational statistical forecasts, the peak-annual SWE insertion and the 1 February SWE insertion reduced the overall root-mean-square error of the seasonal streamflow forecasts by 13% and 23%, respectively, over the 13 major rivers draining the Sierra Nevada. The benefits of the reanalysis SWE insertion are more pronounced in areas with greater snow accumulation, while the complex snow and runoff-generation processes in low-elevation areas impede the forecasting skill improvement through SWE reinitialization alone.


2014 ◽  
Vol 15 (6) ◽  
pp. 2470-2483 ◽  
Author(s):  
Tushar Sinha ◽  
A. Sankarasubramanian ◽  
Amirhossein Mazrooei

Abstract Despite considerable progress in developing real-time climate forecasts, most studies have evaluated the potential in seasonal streamflow forecasting based on ensemble streamflow prediction (ESP) methods, utilizing only climatological forcings while ignoring general circulation model (GCM)-based climate forecasts. The primary limitation in using GCM forecasts is their coarse resolution, which requires spatiotemporal downscaling to implement land surface models. Consequently, multiple sources of errors are introduced in developing real-time streamflow forecasts utilizing GCM forecasts. A set of error decomposition metrics is provided to address the following questions: 1) How are errors in monthly streamflow forecasts attributed to various sources such as temporal disaggregation, spatial downscaling, imprecise initial hydrologic conditions (IHCs), climatological forcings, and imprecise forecasts? and 2) How do these errors propagate with lead time over different seasons? A calibrated Variable Infiltration Capacity model is used over the Apalachicola River at Chattahoochee in the southeastern United States. The model is forced with a combination of daily precipitation forcings (temporally disaggregated observed precipitation, spatially downscaled and temporally disaggregated observed precipitation, ESP, ECHAM4.5 forecasts, and observed) and IHCs [simulated and climatological ensemble reverse ESP (RESP)] but with observed air temperature and wind speed at ⅛° resolution. Then, errors in forecasting monthly streamflow at up to a 3-month lead time are decomposed by comparing the forecasted streamflow to simulated streamflow under observed forcings. Results indicate that the errors due to temporal disaggregation are much higher than the spatial downscaling errors. During winter and early spring, the increasing order of errors at a 1-month lead time is spatial downscaling, model, temporal disaggregation, RESP, large-scale precipitation forecasts, and ESP.


Sign in / Sign up

Export Citation Format

Share Document