scholarly journals Satellite-Derived Light Extinction Coefficient and its Impact on Thermal Structure Simulations in a 1-D Lake Model

Author(s):  
Kiana Zolfaghari ◽  
Claude R. Duguay ◽  
Homa Kheyrollah Pour

Abstract. One essential optical parameter to specify in lake models is water clarity, which is parameterized based on the light extinction coefficient (Kd). A global constant value of Kd is usually specified in lake models. One-dimensional (1-D) lake models are most often used as lake parameterization schemes in numerical weather prediction and regional climate models. This study aimed to improve the performance of the 1-D Freshwater Lake (FLake) model using satellite-derived Kd for Lake Erie. The CoastColour algorithm is applied to MERIS satellite imagery to estimate Kd and evaluated against Kd derived from Secchi disk depth (SDD) field-based measurements collected during Lake Erie cruises. A good agreement is found between field and satellite-derived Kd (RMSE = 0.63 m-1, MBE = −0.09 m-1, I_a = 0.65) (in situ data was collected in 2004, 2005, 2008, 2011, 2012). The constant (0.2 m-1) and satellite-derived Kd values as well as radiation fluxes and meteorological station observations are then used to run FLake at the location of a buoy where lake surface water temperature (LSWT) was measured in 2008. Results improved compared to using a constant Kd value (0.2 m-1) (lake-specific yearly average Kd value: RMSE = 1.54 ºC, MBE = −0.08 ºC; constant Kd value: RMSE = 1.76 ºC, MBE = −1.26 ºC). No significant improvement is found in FLake simulated LSWT when Kd variations in time are considered using a monthly average. Therefore, results suggest that a time-independent, lake-specific, and constant satellite-derived Kd value can reproduce LSWT with sufficient accuracy. A sensitivity analysis is also performed to assess the impact of various Kd values on the simulation of mean water column temperature (MWCT), mixed layer depth (MLD), water temperature isotherms as well as ice dates and thickness. Results show that FLake is sensitive to variations in Kd to estimate the thermal structure of Lake Erie. Dark waters result in warmer spring and colder fall temperatures compare to clear waters. Dark waters always produce warmer MWCT, shallower MLD, longer ice cover duration, and thicker ice. The sensitivity of FLake to Kd variations is more pronounced in the simulation of MWCT and MLD. The model is particularly sensitive to Kd values below 0.5 m-1. This is the first study to assess the value of integrating Kd from the satellite-based CoastColour algorithm into the FLake model. Satellite-derived Kd is found to be a useful input parameter for simulations with FLake and possibly other lake models, and with potential for applicability to other lakes where Kd is not commonly measured.

2017 ◽  
Vol 21 (1) ◽  
pp. 377-391 ◽  
Author(s):  
Kiana Zolfaghari ◽  
Claude R. Duguay ◽  
Homa Kheyrollah Pour

Abstract. A global constant value of the extinction coefficient (Kd) is usually specified in lake models to parameterize water clarity. This study aimed to improve the performance of the 1-D freshwater lake (FLake) model using satellite-derived Kd for Lake Erie. The CoastColour algorithm was applied to MERIS satellite imagery to estimate Kd. The constant (0.2 m−1) and satellite-derived Kd values as well as radiation fluxes and meteorological station observations were then used to run FLake for a meteorological station on Lake Erie. Results improved compared to using the constant Kd value (0.2 m−1). No significant improvement was found in FLake-simulated lake surface water temperature (LSWT) when Kd variations in time were considered using a monthly average. Therefore, results suggest that a time-independent, lake-specific, and constant satellite-derived Kd value can reproduce LSWT with sufficient accuracy for the Lake Erie station. A sensitivity analysis was also performed to assess the impact of various Kd values on the simulation outputs. Results show that FLake is sensitive to variations in Kd to estimate the thermal structure of Lake Erie. Dark waters result in warmer spring and colder fall temperatures compared to clear waters. Dark waters always produce colder mean water column temperature (MWCT) and lake bottom water temperature (LBWT), shallower mixed layer depth (MLD), longer ice cover duration, and thicker ice. The sensitivity of FLake to Kd variations was more pronounced in the simulation of MWCT, LBWT, and MLD. The model was particularly sensitive to Kd values below 0.5 m−1. This is the first study to assess the value of integrating Kd from the satellite-based CoastColour algorithm into the FLake model. Satellite-derived Kd is found to be a useful input parameter for simulations with FLake and possibly other lake models, and it has potential for applicability to other lakes where Kd is not commonly measured.


2017 ◽  
Author(s):  
Sebastian Düsing ◽  
Birgit Wehner ◽  
Patric Seifert ◽  
Albert Ansmann ◽  
Holger Baars ◽  
...  

Abstract. This study presents vertical profiles up to a height of 2300 m a.s.l. of aerosol microphysical and optical properties and cloud condensation nuclei (CCN). Corresponding data have been measured during a field campaign as part of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiments (HOPE), which took place at Melpitz, Germany from September 9 to 29, 2013. The helicopter-borne payload ACTOS (Airborne Cloud and Turbulence Observation System) was used to determine the aerosol particle number size distribution (PNSD), the number concentrations of aerosol particles (PNC) and cloud condensation nuclei (CCN) (CCN-NC), the ambient relative humidity (RH), and temperature (T). Simultaneous measurements on ground provided a holistic view on aerosol microphysical properties such as the PNSD, the chemical composition and the CCN-NC. Additional measurements of a 3 + 2 wavelength polarization lidar system (PollyXT) provided profiles of the aerosol particle light backscatter coefficient (σbsc) for three wavelengths (355, 532 and 1064 nm). From profiles of σbsc profiles of the aerosol particle light extinction coefficient (σext) were determined using the extinction-to-backscatter ratio. Furthermore, CCN-NC profiles were estimated on basis of the lidar-measurements. Ambient state optical properties of aerosol particles were derived on the basis of airborne in situ measurements of ACTOS (PNSD) and in situ measurements on ground (chemical aerosol characterization) using Mie-theory. On the basis of ground-based and airborne measurements, this work investigates the representativeness of ground-based aerosol microphysical properties for the boundary layer for two case-studies. The PNSD measurements on ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative for the PBL when the PBL is well mixed. Locally isolated new particle formation events on ground or at the top of the PBL led to vertical variability in the here presented cases and ground-based measurements are not representative for the PBL. Furthermore, the lidar-based estimates of CCN-NC profiles were compared with the airborne in situ measurements of ACTOS. This comparison showed good agreements within the uncertainty range. Finally, this work provides a closure study between the optical aerosol particle properties in ambient state based on the airborne ACTOS measurements and derived with the lidar measurements. The investigation of the optical properties shows for 14 measurement-points that the airborne-based particle light backscatter coefficient is for 1064 nm 50 % smaller than the measurements of the lidar system, 27.6 % smaller for 532 nm and 29.9 % smaller for 355 nm. These results are quite promising, since in-situ measurement based Mie-calculations of the particle light backscattering are scarce and the modelling is quite challenging. In contradiction for the particle light extinction coefficient retrieved from the airborne in situ measurements were found a good agreement. The airborne-based particle light extinction coefficient was just 7.9 % larger for 532 nm and 3.5 % smaller for 355 nm, for an assumed lidar ratio (LR) of 55 sr. The particle light extinction coefficient for 1064 nm was derived with a LR of 30 sr. For this wavelength, the airborne-based particle light extinction coefficient is 5.2 % smaller than the lidar-measurements. Also, the correlation for the particle light extinction coefficient in combination with Mie-based LR's are in agreement for typical LR's of European background aerosol.


2018 ◽  
Author(s):  
Fushan Wang ◽  
Guangheng Ni ◽  
William J. Riley ◽  
Jinyun Tang ◽  
Dejun Zhu ◽  
...  

Abstract. Large lakes and reservoirs play important roles in modulating regional hydrological cycles and climate; however, their representations in coupled models remain uncertain. The existing lake module in the Weather Research and Forecasting (WRF) system (hereafter WRF-Lake), although widely used, did not accurately predict temperature profiles in deep lakes mainly due to poor lake surface property parameterizations and underestimation of heat transfer between lake layers. We therefore revised WRF-Lake by improving its (1) numerical discretization scheme; (2) surface property parameterization; (3) diffusivity parameterization for deep lakes; and (4) convection scheme, the outcome of which became WRF-rLake (i.e., revised lake model). We evaluated WRF-rLake by comparing simulated and measured water temperature at the Nuozhadu Reservoir, a deep reservoir in southwestern China. WRF-rLake performs better than its predecessor by reducing the root-mean-square-error (RMSE) against observed lake surface temperatures (LSTs) from 1.4 °C to 1.1 °C and consistently improving simulated vertical temperature profiles. We also evaluated the sensitivity of simulated water temperature and surface energy fluxes to various modelled lake processes and parameters. We found (1) large changes in surface heat fluxes (up to 60 W m−2) associated with the improved surface property parameterization and (2) that the simulated lake thermal structure depends strongly on the light extinction coefficient and vertical diffusivity. Although currently only evaluated at the Nuozhadu Reservoir, we expect that these model parameter and structural improvements could be universal and therefore recommend further testing at other deep lakes and reservoirs.


2018 ◽  
Vol 18 (2) ◽  
pp. 1263-1290 ◽  
Author(s):  
Sebastian Düsing ◽  
Birgit Wehner ◽  
Patric Seifert ◽  
Albert Ansmann ◽  
Holger Baars ◽  
...  

Abstract. This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for different altitudes were determined using the airborne in situ measurements and were compared with the lidar measurements. The investigation of the optical properties shows that on average the airborne-based particle light backscatter coefficient is 50.1 % smaller for 1064 nm, 27.4 % smaller for 532 nm, and 29.5 % smaller for 355 nm than the measurements of the lidar system. These results are quite promising, since in situ measurement-based Mie calculations of the particle light backscattering are scarce and the modeling is quite challenging. In contrast, for the particle light extinction coefficient we found a good agreement. The airborne-based particle light extinction coefficient was just 8.2 % larger for 532 nm and 3 % smaller for 355 nm, for an assumed LR of 55 sr. The particle light extinction coefficient for 1064 nm was derived with a LR of 30 sr. For this wavelength, the airborne-based particle light extinction coefficient is 5.2 % smaller than the lidar measurements. For the first time, the lidar ratio of 30 sr for 1064 nm was determined on the basis of in situ measurements and the LR of 55 sr for 355 and 532 nm wavelength was reproduced for European continental aerosol on the basis of this comparison. Lidar observations and the in situ based aerosol optical properties agree within the uncertainties. However, our observations indicate that a determination of the PNSD for a large size range is important for a reliable modeling of aerosol particle backscattering.


2020 ◽  
Vol 42 ◽  
pp. e18
Author(s):  
Levi Pires de Andrade ◽  
Jonathan Willian Zangeski Novais ◽  
Marta Cristina de Jesus Albuquerque Nogueira ◽  
Luciana Sanches ◽  
José De Souza Nogueira ◽  
...  

The knowledge of the radiative characteristics of an area is essential to understanding the flows of matter and energy. The value of the Light Extinction Coefficient (K) is a parameter that describes the efficiency of the interception of light in a given canopy, being required, as input, for several SWAP (Soil-Water-Atmosphere-Plant) models, which allow the characterization of the interactive properties among  soil, plant and atmosphere concerning these exchanges of matter and energy. This study aimed to obtain the light extinction coefficient (K) for a savanna fragment located in the urban area of Cuiabá. The used data correspond to one measurement each month, totaling twelve measurements in 30 points during the period from October 2014 to September 2015. The measured variables  were the LAI (Leaf Area Index), the photosynthetically active incident radiation (PARinc) and the transmitted radiation  (PARtrans), and the calculated ones were the zenith angle (Zh) and the extinction coefficient (K). Was observed an annual variability for the light extinction coefficient between 0.49 and 0.69. There are seasonal changes that interfere with the canopy geometry and the position of the study area in relation to the solar radiation incidence, concluding that the K variability is predominantly temporal.


Sign in / Sign up

Export Citation Format

Share Document