scholarly journals Assessing reliability of hydrological simulations through model intercomparison at the local scale in the Everest region

2017 ◽  
Author(s):  
Judith Eeckman ◽  
Santosh Nepal ◽  
Pierre Chevallier ◽  
Gauthier Camensuli ◽  
Francois Delclaux ◽  
...  

Abstract. Understanding hydrological processes of high-altitude areas is vital because downstream communities depend on water resources for their livelihood. This paper compares the hydrological responses at the local scale of two models using different degrees of refinement to represent physical processes in sparsely instrumented mountainous Himalayan catchments. Two small catchments located in mid- and high- mountain environments were chosen to represent the very different climatic and physiographic characteristics of the Central Himalayas in the Everest region of eastern Nepal. This work presents the novelty of applying, at a small spatio-temporal scale and under the same forcing conditions, a fully distributed surface scheme based on mass and energy balance equations (ISBA surface scheme), and a semi-distributed calibrated model (J2000 hydrological model). A new conceptual module coupled to the ISBA surface scheme for flow routing is presented. The results show that both models describe the evapotranspiration, quick runoff and discharge processes in a similar way. The reliability of the simulations for these variables can therefore be considered as satisfactory. The differences in the structure and results of the two models mainly concern the water storage and flows in the soil, in particular for the high-mountain catchment. This conclusion suggests that the uncertainty associated with model structure is significant for water storage and flow in the soil.

2020 ◽  
Author(s):  
Christian Halla ◽  
Jan Henrik Blöthe ◽  
Carla Tapia Baldis ◽  
Dario Trombotto ◽  
Christin Hilbich ◽  
...  

Abstract. The quantification of volumetric ice and water contents in active rock glaciers is necessary to estimate their role as water stores and contributors to runoff in dry mountain catchments. In the semi-arid to arid Andes of Argentina, active rock glaciers potentially constitute important water reservoirs due to their widespread distribution. Here however, water storage capacities and their interannual changes have so far escaped quantification in detailed field studies. Volumetric ice and water contents were quantified using a petrophysical four-phase model (4PM) based on complementary electrical resistivities (ERT) and seismic refraction tomographies (SRT) in different positions of Dos Lenguas rock glacier in the Upper Agua Negra basin, Argentina. We derived vertical and horizontal surface changes of the Dos Lenguas rock glacier, for the periods 2016–17 and 2017–18 using drone-derived digital elevation models (DEM). Interannual water storage changes of −36 mm yr−1 and +27 mm yr−1 derived from DEMs of Difference (DoD) for the periods 2016–17 and 2017–18, respectively, indicate that significant amounts of annual precipitation rates can be stored in and released from the active rock glacier. Heterogeneous ice and water contents show ice-rich permafrost and supra-, intra- and sub-permafrost aquifers in the subsurface. Active layer and ice-rich permafrost control traps and pathways of shallow ground water, and thus regulate interannual storage changes and water releases from the active rock glacier in the dry mountain catchment. The ice content of 1.7–2.0 × 109 kg in the active Dos Lenguas rock glacier represents an important long-term ice reservoir, just like other ground ice deposits in the vicinity, if compared to surface ice that covers less than 3 % of the high mountain catchment.


2017 ◽  
Vol 56 (6) ◽  
pp. 1707-1729 ◽  
Author(s):  
Marlis Hofer ◽  
Johanna Nemec ◽  
Nicolas J. Cullen ◽  
Markus Weber

AbstractThis study explores the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity, and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in close proximity to mountain glaciers: 1) the Vernagtbach station in the European Alps, 2) the Artesonraju measuring site in the tropical South American Andes, and 3) the Mount Brewster measuring site in the Southern Alps of New Zealand. The large-scale dataset being evaluated is the ERA-Interim dataset. In the downscaling procedure, particular emphasis is put on developing efficient yet not overfit models from the limited information in the temporally short (typically a few years) observational records of the high mountain sites. For direct (univariate) predictors, optimum scale analysis turns out to be a powerful means to improve the forecast skill without the need to increase the downscaling model complexity. Yet the traditional (multivariate) predictor sets show generally higher skill than the direct predictors for all variables, sites, and days of the year. Only in the case of large sampling uncertainty (identified here to particularly affect observed precipitation) is the use of univariate predictor options justified. Overall, the authors find a range in forecast skill among the different predictor options applied in the literature up to 0.5 (where 0 indicates no skill, and 1 represents perfect skill). This highlights that a sophisticated predictor selection (as presented in this study) is essential in the development of realistic, local-scale scenarios by means of downscaling.


2014 ◽  
Vol 35 ◽  
pp. 145-155 ◽  
Author(s):  
D. Schneider ◽  
C. Huggel ◽  
A. Cochachin ◽  
S. Guillén ◽  
J. García

Abstract. Recent warming has had enormous impacts on glaciers and high-mountain environments. Hazards have changed or new ones have emerged, including those from glacier lakes that form as glaciers retreat. The Andes of Peru have repeatedly been severely impacted by glacier lake outburst floods in the past. An important recent event occurred in the Cordillera Blanca in 2010 when an ice avalanche impacted a glacier lake and triggered an outburst flood that affected the downstream communities and city of Carhuaz. In this study we evaluate how such complex cascades of mass movement processes can be simulated coupling different physically-based numerical models. We furthermore develop an approach that allows us to elaborate corresponding hazard maps according to existing guidelines for debris flows and based on modelling results and field work.


2021 ◽  
Vol 15 (2) ◽  
pp. 1187-1213
Author(s):  
Christian Halla ◽  
Jan Henrik Blöthe ◽  
Carla Tapia Baldis ◽  
Dario Trombotto Liaudat ◽  
Christin Hilbich ◽  
...  

Abstract. The quantification of volumetric ice and water content in active rock glaciers is necessary to estimate their role as water stores and contributors to runoff in dry mountain catchments. In the semi-arid to arid Andes of Argentina, active rock glaciers potentially constitute important water reservoirs due to their widespread distribution. Here however, water storage capacities and their interannual changes have so far escaped quantification in detailed field studies. Volumetric ice and water content was quantified using a petrophysical four-phase model (4PM) based on complementary electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) in different positions of the Dos Lenguas rock glacier in the upper Agua Negra basin, Argentina. We derived vertical and horizontal surface changes of the Dos Lenguas rock glacier, for the periods 2016–2017 and 2017–2018 using drone-derived digital elevation models (DEMs). Interannual water storage changes of −36 mm yr−1 and +27 mm yr−1 derived from volumetric surface changes for the periods 2016–2017 and 2017–2018, respectively, indicate that significant amounts of annual precipitation can be stored in and released from the active rock glacier. Geophysical results show heterogeneous ice and water content with ice-rich permafrost and supra-, intra- and sub-permafrost water pathways at the end of the thaw period. Active layer and ice-rich permafrost control traps and pathways of shallow groundwater and thus regulate interannual storage changes and water releases from the active rock glaciers in the dry mountain catchment. The ice content of 1.7–2.0 × 109 kg in the active Dos Lenguas rock glacier represents an important long-term ice reservoir, as do other ground ice deposits in the vicinity, if compared to surface ice that covers less than 3 % of the high mountain catchment.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Philip Brick ◽  
Kent Woodruff

This case explores the Methow Beaver Project (MBP), an ambitious experiment to restore beaver (Castor canadensis) to a high mountain watershed in Washington State, USA. The Pacific Northwest is already experiencing weather regimes consistent with longer term climate projections, which predict longer and drier summers and stronger and wetter winter storms. Ironically, this combination makes imperative more water storage in one of the most heavily dammed regions in the nation. Although the positive role that beaver can play in watershed enhancement has been well known for decades, no project has previously attempted to re-introduce beaver on a watershed scale with a rigorous monitoring protocol designed to document improved water storage and temperature conditions needed for human uses and aquatic species. While the MBP has demonstrated that beaver can be re-introduced on a watershed scale, it has been much more difficult to scientifically demonstrate positive changes in water retention and stream temperature, given hydrologic complexity, unprecedented fire and floods, and the fact that beaver are highly mobile. This case study can help environmental studies students and natural resource policy professionals think about the broader challenges of diffuse, ecosystem services approaches to climate adaptation. Beaver-produced watershed improvements will remain difficult to quantify and verify, and thus will likely remain less attractive to water planners than conventional storage dams. But as climate conditions put additional pressure on such infrastructure, it is worth considering how beaver might be employed to augment watershed storage capacity, even if this capacity is likely to remain at least in part inscrutable.


2018 ◽  
Author(s):  
Hossein Sahour ◽  
◽  
Mohamed Sultan ◽  
Karem Abdelmohsen ◽  
Sita Karki ◽  
...  

2021 ◽  
Vol 35 ◽  
pp. 100799
Author(s):  
Emile Elias ◽  
Darren James ◽  
Sierra Heimel ◽  
Caiti Steele ◽  
Heidi Steltzer ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.


Sign in / Sign up

Export Citation Format

Share Document