scholarly journals Supplementary material to "Evaluating and improving modeled turbulent heat fluxes across the North American Great Lakes"

Author(s):  
Umarporn Charusombat ◽  
Ayumi Fujisaki-Manome ◽  
Andrew D. Gronewold ◽  
Brent M. Lofgren ◽  
Eric J. Anderson ◽  
...  
2018 ◽  
Vol 22 (10) ◽  
pp. 5559-5578 ◽  
Author(s):  
Umarporn Charusombat ◽  
Ayumi Fujisaki-Manome ◽  
Andrew D. Gronewold ◽  
Brent M. Lofgren ◽  
Eric J. Anderson ◽  
...  

Abstract. Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the North American Great Lakes. These fluxes can be measured in situ using eddy covariance techniques and are regularly included as a component of lake–atmosphere models. To help ensure accurate projections of lake temperature, circulation, and regional meteorology, we validated the output of five algorithms used in three popular models to calculate surface heat fluxes: the Finite Volume Community Ocean Model (FVCOM, with three different options for heat flux algorithm), the Weather Research and Forecasting (WRF) model, and the Large Lake Thermodynamic Model. These models are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system. We isolated only the code for the heat flux algorithms from each model and drove them using meteorological data from four over-lake stations within the Great Lakes Evaporation Network (GLEN), where eddy covariance measurements were also made, enabling co-located comparison. All algorithms reasonably reproduced the seasonal cycle of the turbulent heat fluxes, but all of the algorithms except for the Coupled Ocean–Atmosphere Response Experiment (COARE) algorithm showed notable overestimation of the fluxes in fall and winter. Overall, COARE had the best agreement with eddy covariance measurements. The four algorithms other than COARE were altered by updating the parameterization of roughness length scales for air temperature and humidity to match those used in COARE, yielding improved agreement between modeled and observed sensible and latent heat fluxes.


2018 ◽  
Author(s):  
Umarporn Charusombat ◽  
Ayumi Fujisaki-Manome ◽  
Andrew D. Gronewold ◽  
Brent M. Lofgren ◽  
Eric J. Anderson ◽  
...  

Abstract. Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the North American Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of lake hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from three parent model systems; the Finite-Volume Community Ocean Model (FVCOM, with three different options for heat flux algorithm), the Weather Research and Forecasting (WRF) model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes’ physical system. The heat flux algorithms were isolated from each model and driven by meteorological data from four over-lake stations within the Great Lakes Evaporation Network (GLEN). The simulation results were then compared with eddy covariance flux measurements from the same GLEN sites. All algorithms reasonably reproduced the seasonal cycle of the turbulent heat fluxes while the original algorithms except for the Coupled Ocean Atmosphere Response Experiment (COARE) algorithm showed notable overestimation of the fluxes in fall and winter. Overall, COARE had the best agreement with eddy covariance measurements. Simulations with the four algorithms other than COARE were improved by updating the parameterization of roughness length scales for air temperature and humidity to match those used in COARE. Agreement between modeled and observed fluxes notably varied according to the geographic locations of the GLEN sites.


2001 ◽  
pp. 341-362
Author(s):  
P.J. Ewins ◽  
D.V. Weseloh ◽  
G.A. Fox ◽  
C.A. Bishop ◽  
T. Boughen

2000 ◽  
Vol 7 (3) ◽  
pp. 176-184 ◽  
Author(s):  
Erin M. Snyder ◽  
Shane A. Snyder ◽  
John P. Giesy ◽  
Shari A. Blonde ◽  
Gary K. Hurlburt ◽  
...  

2000 ◽  
Vol 7 (1) ◽  
pp. 51-51 ◽  
Author(s):  
Erin M. Snyder ◽  
Shane A. Snyder ◽  
John P. Giesy ◽  
Shari A. Blonde ◽  
Gary K. Hurlburt ◽  
...  

World ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 318-329
Author(s):  
Savitri Jetoo ◽  
Gail Krantzberg

The commitment to advance the protection of the North American Great Lakes and the Baltic Sea continues during the COVID-19 pandemic. The resilience of the research community was displayed as policy decisions were made for the first virtual conferences this year to share scientific findings and expertise in both regions. As this pandemic continues to challenge the world, countries have responded to the threat and continue to deal with the uncertainties of this wicked transboundary problem in many different ways. This article discusses key governance and policy issues that have been revealed thus far that can inform the governance of the transboundary North American Great Lakes and the Baltic Sea. Key lessons from the pandemic include waiting for total scientific certainty to act can lead to fatal consequences and our symbiotic connection with nature. Further insights from the pandemic include the importance of context, science-based leadership, institutional accountability, and acknowledging that nature knows no borders.


PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0221977 ◽  
Author(s):  
Amber L. Pearson ◽  
Ashton Shortridge ◽  
Paul L. Delamater ◽  
Teresa H. Horton ◽  
Kyla Dahlin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document