scholarly journals Spatial and temporal variation in river corridor exchange across a 5th order mountain stream network

Author(s):  
Adam S. Ward ◽  
Steven M. Wondzell ◽  
Noah M. Schmadel ◽  
Skuyler Herzog ◽  
Jay P. Zarnetske ◽  
...  

Abstract. Although most field and modeling studies of river corridor exchange have been conducted a scales ranging from 10’s to 100’s of meters; results of these studies are used to predict their ecological and hydrological influences at the scale of river networks. Further complicating prediction, exchange are expected to vary with hydrologic forcing and the local geomorphic setting. While we desire predictive power, we lack a complete spatiotemporal relationship relating discharge to the variation in geologic setting and hydrologic forcing that are expected across a river basin. Indeed, Wondzell’s [2011] conceptual model predicts systematic variation in river corridor exchange as a function of (1) variation in discharge over time at a fixed location, (2) variation in discharge with location in the river network, and (3) local geomorphic setting. To test this conceptual model we conducted more than 60 solute tracer studies collected in a synoptic campaign in the 5th order river network of the H. J. Andrews Experimental Forest (Oregon, USA). We interpret the data using a series of metrics describing river corridor exchange and solute transport, testing for consistent direction and magnitude of relationships relating these metrics to discharge and local geomorphic setting. We confirmed systematic decrease in river corridor exchange space through the river networks, from headwaters to the larger mainstem. However, we did not find systematic variation with changes in discharge through time, nor with local geomorphic setting. While interpretation of our results are complicated by problems with the analytical methods, they are sufficiently robust for us to conclude that space-for-time and time-for-space substitutions are not appropriate in our study system. Finally, we suggest two strategies that will improve the interpretability of tracer test results and help the hyporheic community develop robust data sets that will enable comparisons across multiple sites and/or discharge conditions.

2019 ◽  
Vol 23 (12) ◽  
pp. 5199-5225 ◽  
Author(s):  
Adam S. Ward ◽  
Steven M. Wondzell ◽  
Noah M. Schmadel ◽  
Skuyler Herzog ◽  
Jay P. Zarnetske ◽  
...  

Abstract. Although most field and modeling studies of river corridor exchange have been conducted at scales ranging from tens to hundreds of meters, results of these studies are used to predict their ecological and hydrological influences at the scale of river networks. Further complicating prediction, exchanges are expected to vary with hydrologic forcing and the local geomorphic setting. While we desire predictive power, we lack a complete spatiotemporal relationship relating discharge to the variation in geologic setting and hydrologic forcing that is expected across a river basin. Indeed, the conceptual model of Wondzell (2011) predicts systematic variation in river corridor exchange as a function of (1) variation in baseflow over time at a fixed location, (2) variation in discharge with location in the river network, and (3) local geomorphic setting. To test this conceptual model we conducted more than 60 solute tracer studies including a synoptic campaign in the 5th-order river network of the H. J. Andrews Experimental Forest (Oregon, USA) and replicate-in-time experiments in four watersheds. We interpret the data using a series of metrics describing river corridor exchange and solute transport, testing for consistent direction and magnitude of relationships relating these metrics to discharge and local geomorphic setting. We confirmed systematic decrease in river corridor exchange space through the river networks, from headwaters to the larger main stem. However, we did not find systematic variation with changes in discharge through time or with local geomorphic setting. While interpretation of our results is complicated by problems with the analytical methods, the results are sufficiently robust for us to conclude that space-for-time and time-for-space substitutions are not appropriate in our study system. Finally, we suggest two strategies that will improve the interpretability of tracer test results and help the hyporheic community develop robust datasets that will enable comparisons across multiple sites and/or discharge conditions.


2019 ◽  
Vol 11 (4) ◽  
pp. 1567-1581 ◽  
Author(s):  
Adam S. Ward ◽  
Jay P. Zarnetske ◽  
Viktor Baranov ◽  
Phillip J. Blaen ◽  
Nicolai Brekenfeld ◽  
...  

Abstract. A comprehensive set of measurements and calculated metrics describing physical, chemical, and biological conditions in the river corridor is presented. These data were collected in a catchment-wide, synoptic campaign in the H. J. Andrews Experimental Forest (Cascade Mountains, Oregon, USA) in summer 2016 during low-discharge conditions. Extensive characterization of 62 sites including surface water, hyporheic water, and streambed sediment was conducted spanning 1st- through 5th-order reaches in the river network. The objective of the sample design and data acquisition was to generate a novel data set to support scaling of river corridor processes across varying flows and morphologic forms present in a river network. The data are available at https://doi.org/10.4211/hs.f4484e0703f743c696c2e1f209abb842 (Ward, 2019).


2019 ◽  
Author(s):  
Adam S. Ward ◽  
Jay P. Zarnetske ◽  
Viktor Baranov ◽  
Phillip J. Blaen ◽  
Nicolai Brekenfeld ◽  
...  

Abstract. A comprehensive set of measurements and calculated metrics describing physical, chemical, and biological conditions in the river corridor is presented. These data were collected in a catchment-wide, synoptic campaign in Lookout Creek within the H.J. Andrews Experimental Forest (Cascade Mountains, Oregon, USA) in summer 2016 during low discharge conditions. Extensive characterization of 62 sites including surface water, hyporheic water, and streambed sediment was conducted spanning 1st through 5th order reaches in the river network. The objective of the sample design and data acquisition was to generate a novel data set to support scaling of river corridor processes across varying flows and morphologic forms present in a river network. The data are available at http://www.hydroshare.org/resource/f4484e0703f743c696c2e1f209abb842 (Ward, 2019).


Author(s):  
M. Li ◽  
L. Chen ◽  
Y. Cui ◽  
M. Zhang

This paper researched the influence on the topographical characteristics of watersheds by setting different catchment area thresholds based on different data sets, namely ZY3 DSM, SRTM DEM and ASTER GDEM. Slope, hypsometric integral, river network density and river network discrepancy are analyzed and compared. The results are as follows: a) Three data sets all can express the same rough terrain characteristics and the same degree of watershed topography development; b) ZY3 DSM can reflect terrain information over the Malyy Naryn River watershed in most detail and it has the best expression effect on the terrain among the three data sets of ZY3 DSM, SRTM DEM and ASTER GDEM, followed by SRTM DEM, and the effect of ASTER GDEM is the worst; c) The similarity of river networks extracted by ZY3 DSM and SRTM DEM is the highest, and the similarity between ZY3 DSM and ASTER GDEM is the lowest one.


2018 ◽  
Author(s):  
Adam S. Ward ◽  
◽  
Skuyler Herzog ◽  
Steven M. Wondzell ◽  
Noah Schmadel ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 186
Author(s):  
HuiHui Zhang ◽  
Hugo A. Loáiciga ◽  
LuWei Feng ◽  
Jing He ◽  
QingYun Du

Determining the flow accumulation threshold (FAT) is a key task in the extraction of river networks from digital elevation models (DEMs). Several methods have been developed to extract river networks from Digital Elevation Models. However, few studies have considered the geomorphologic complexity in the FAT estimation and river network extraction. Recent studies estimated influencing factors’ impacts on the river length or drainage density without considering anthropogenic impacts and landscape patterns. This study contributes two FAT estimation methods. The first method explores the statistical association between FAT and 47 tentative explanatory factors. Specifically, multi-source data, including meteorologic, vegetation, anthropogenic, landscape, lithology, and topologic characteristics are incorporated into a drainage density-FAT model in basins with complex topographic and environmental characteristics. Non-negative matrix factorization (NMF) was employed to evaluate the factors’ predictive performance. The second method exploits fractal geometry theory to estimate the FAT at the regional scale, that is, in basins whose large areal extent precludes the use of basin-wide representative regression predictors. This paper’s methodology is applied to data acquired for Hubei and Qinghai Provinces, China, from 2001 through 2018 and systematically tested with visual and statistical criteria. Our results reveal key local features useful for river network extraction within the context of complex geomorphologic characteristics at relatively small spatial scales and establish the importance of properly choosing explanatory geomorphologic characteristics in river network extraction. The multifractal method exhibits more accurate extracting results than the box-counting method at the regional scale.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Lin ◽  
Ming Pan ◽  
Eric F. Wood ◽  
Dai Yamazaki ◽  
George H. Allen

AbstractSpatial variability of river network drainage density (Dd) is a key feature of river systems, yet few existing global hydrography datasets have properly accounted for it. Here, we present a new vector-based global hydrography that reasonably estimates the spatial variability of Dd worldwide. It is built by delineating channels from the latest 90-m Multi-Error-Removed Improved Terrain (MERIT) digital elevation model and flow direction/accumulation. A machine learning approach is developed to estimate Dd based on the global watershed-level climatic, topographic, hydrologic, and geologic conditions, where relationships between hydroclimate factors and Dd are trained using the high-quality National Hydrography Dataset Plus (NHDPlusV2) data. By benchmarking our dataset against HydroSHEDS and several regional hydrography datasets, we show the new river flowlines are in much better agreement with Landsat-derived centerlines, and improved Dd patterns of river networks (totaling ~75 million kilometers in length) are obtained. Basins and estimates of intermittent stream fraction are also delineated to support water resources management. This new dataset (MERIT Hydro–Vector) should enable full global modeling of river system processes at fine spatial resolutions.


Author(s):  
Chen Lin ◽  
Xiaolin Shen ◽  
Si Chen ◽  
Muhua Zhu ◽  
Yanghua Xiao

The study of consumer psychology reveals two categories of consumption decision procedures: compensatory rules and non-compensatory rules. Existing recommendation models which are based on latent factor models assume the consumers follow the compensatory rules, i.e. they evaluate an item over multiple aspects and compute a weighted or/and summated score which is used to derive the rating or ranking of the item. However, it has been shown in the literature of consumer behavior that, consumers adopt non-compensatory rules more often than compensatory rules. Our main contribution in this paper is to study the unexplored area of utilizing non-compensatory rules in recommendation models.Our general assumptions are (1) there are K universal hidden aspects. In each evaluation session, only one aspect is chosen as the prominent aspect according to user preference. (2) Evaluations over prominent and non-prominent aspects are non-compensatory. Evaluation is mainly based on item performance on the prominent aspect. For non-prominent aspects the user sets a minimal acceptable threshold. We give a conceptual model for these general assumptions. We show how this conceptual model can be realized in both pointwise rating prediction models and pair-wise ranking prediction models. Experiments on real-world data sets validate that adopting non-compensatory rules improves recommendation performance for both rating and ranking models.


2021 ◽  
Author(s):  
Florian Betz ◽  
Magdalena Lauermann ◽  
Bernd Cyffka

<p>In fluvial geomorphology as well as in freshwater ecology, rivers are commonly seen as nested hierarchical systems functioning over a range of spatial and temporal scales. Thus, for a comprehensive assessment, information on various scales is required. Over the past decade, remote sensing based approaches have become increasingly popular in river science to increase the spatial scale of analysis. However, data-scarce areas have been mostly ignored so far despite the fact that most remaining free flowing – and thus ecologically valuable – rivers worldwide are located in regions characterized by a lack of data sources like LiDAR or even aerial imagery. High resolution satellite data would be able to fill this data gap, but tends to be too costly for large scale applications what limits the ability for comprehensive studies on river systems in such remote areas. This in turn is a limitation for management and conservation of these rivers.</p><p>In this contribution, we suggest an approach for river corridor mapping based on open access data only in order to foster large scale geomorphological mapping of river corridors in data-scarce areas. For this aim, we combine advanced terrain analysis with multispectral remote sensing using the SRTM-1 DEM along with Landsat OLI imagery. We take the Naryn River in Kyrgyzstan as an example to demonstrate the potential of these open access data sets to derive a comprehensive set of parameters for characterizing this river corridor. The methods are adapted to the specific characteristics of medium resolution open access data sets and include an innovative, fuzzy logic based approach for riparian zone delineation, longitudinal profile smoothing based on constrained quantile regression and a delineation of the active channel width as needed for specific stream power computation. In addition, an indicator for river dynamics based on Landsat time series is developed. For each derived river corridor parameter, a rigor validation is performed. The results demonstrate, that our open access approach for geomorphological mapping of river corridors is capable to provide results sufficiently accurate to derive reach averaged information. Thus, it is well suited for large scale river characterization in data-scarce regions where otherwise the river corridors would remain largely unexplored from an up-to-date riverscape perspective. Such a characterization might be an entry point for further, more detailed research in selected study reaches and can deliver the required comprehensive background information for a range of topics in river science.</p>


2021 ◽  
Author(s):  
Mehdi Mazaheri ◽  
J. M. V. Samani ◽  
Fulvio Boano

Abstract The simultaneous identification of location and source release history in complex river networks is a very complicated ill-posed problem, particularly in a case of multiple unknown pollutant sources with time-varying release pattern. This study presents an innovative method for simultaneous identification of the number, locations and release histories of multiple pollutant point sources in a river network using minimum observation data. Considering two different type of monitoring stations with an adaptive arrangement as well as real-time data collection at those stations and using a reliable numerical flow and transport model, at first the number and suspected reach of presence of pollutant sources are determined. Then the source location and its intensity function is calculated by solving inverse source problem using a geostatistical approach. A case study with three different scenarios in terms of the number, release time and location of pollutant sources are discussed, concerning a river network with unsteady and non-uniform flow. Results showed the capability of the proposed method in identifying of sought source characteristics even in complicated cases with simultaneous activity of multiple pollutant sources.


Sign in / Sign up

Export Citation Format

Share Document