scholarly journals Setting the Flow Accumulation Threshold Based on Environmental and Morphologic Features to Extract River Networks from Digital Elevation Models

2021 ◽  
Vol 10 (3) ◽  
pp. 186
Author(s):  
HuiHui Zhang ◽  
Hugo A. Loáiciga ◽  
LuWei Feng ◽  
Jing He ◽  
QingYun Du

Determining the flow accumulation threshold (FAT) is a key task in the extraction of river networks from digital elevation models (DEMs). Several methods have been developed to extract river networks from Digital Elevation Models. However, few studies have considered the geomorphologic complexity in the FAT estimation and river network extraction. Recent studies estimated influencing factors’ impacts on the river length or drainage density without considering anthropogenic impacts and landscape patterns. This study contributes two FAT estimation methods. The first method explores the statistical association between FAT and 47 tentative explanatory factors. Specifically, multi-source data, including meteorologic, vegetation, anthropogenic, landscape, lithology, and topologic characteristics are incorporated into a drainage density-FAT model in basins with complex topographic and environmental characteristics. Non-negative matrix factorization (NMF) was employed to evaluate the factors’ predictive performance. The second method exploits fractal geometry theory to estimate the FAT at the regional scale, that is, in basins whose large areal extent precludes the use of basin-wide representative regression predictors. This paper’s methodology is applied to data acquired for Hubei and Qinghai Provinces, China, from 2001 through 2018 and systematically tested with visual and statistical criteria. Our results reveal key local features useful for river network extraction within the context of complex geomorphologic characteristics at relatively small spatial scales and establish the importance of properly choosing explanatory geomorphologic characteristics in river network extraction. The multifractal method exhibits more accurate extracting results than the box-counting method at the regional scale.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Lin ◽  
Ming Pan ◽  
Eric F. Wood ◽  
Dai Yamazaki ◽  
George H. Allen

AbstractSpatial variability of river network drainage density (Dd) is a key feature of river systems, yet few existing global hydrography datasets have properly accounted for it. Here, we present a new vector-based global hydrography that reasonably estimates the spatial variability of Dd worldwide. It is built by delineating channels from the latest 90-m Multi-Error-Removed Improved Terrain (MERIT) digital elevation model and flow direction/accumulation. A machine learning approach is developed to estimate Dd based on the global watershed-level climatic, topographic, hydrologic, and geologic conditions, where relationships between hydroclimate factors and Dd are trained using the high-quality National Hydrography Dataset Plus (NHDPlusV2) data. By benchmarking our dataset against HydroSHEDS and several regional hydrography datasets, we show the new river flowlines are in much better agreement with Landsat-derived centerlines, and improved Dd patterns of river networks (totaling ~75 million kilometers in length) are obtained. Basins and estimates of intermittent stream fraction are also delineated to support water resources management. This new dataset (MERIT Hydro–Vector) should enable full global modeling of river system processes at fine spatial resolutions.


2020 ◽  
Vol 12 (20) ◽  
pp. 3429
Author(s):  
Ziyang Xing ◽  
Zhaohui Chi ◽  
Ying Yang ◽  
Shiyi Chen ◽  
Huabing Huang ◽  
...  

Digital Elevation Models (DEMs) of Greenland provide the basic data for studying the Greenland ice sheet (GrIS), but little research quantitatively evaluates and compares the accuracy of various Greenland DEMs. This study uses IceBridge elevation data to evaluate the accuracies of the the Greenland Ice Map Project (GIMP)1 DEM, GIMP2 DEM, TanDEM-X, and ArcticDEM in their corresponding time ranges. This study also analyzes the impact of DEM accuracy and resolution on the accuracy of river network extraction. The results show that (1) within the time range covered by each DEM, TanDEM-X with an RMSE of 5.60 m has higher accuracy than the other DEMs in terms of absolute height accuracy, while GIMP1 has the lowest accuracy among the four Greenland DEMs, with an RMSE of 14.34 m. (2) Greenland DEMs are affected by regional errors and interannual changes. The accuracy in areas with elevations above 2000 m is higher than that in areas with elevations below 2000 m, and better accuracy is observed in the north than in the south. The stability of the ArcticDEM product is higher than those of the other three DEM products, and its RMSE standard deviation over multiple years is only 0.14 m. Therefore, the errors caused by the applications of DEMs with longer time spans are smaller. GIMP1 performs in an opposite manner, with a standard deviation of 2.39 m. (3) The river network extracted from TanDEM-X is close to the real river network digitized from remote sensing images, with an accuracy of 50.78%. The river network extracted from GIMP1 exhibits the largest errors, with an accuracy of only 8.83%. This study calculates and compares the accuracy of four Greenland DEMs and indicates that TanDEM-X has the highest accuracy, adding quantitative studies on the accuracy evaluation of various Greenland DEMs. This study also compares the results of different DEM river network extractions, verifies the impact of DEM accuracy on the accuracy of the river network extraction results, and provides an explorable direction for the hydrological analysis of Greenland as a whole.


2012 ◽  
Vol 16 (10) ◽  
pp. 3851-3862 ◽  
Author(s):  
D. Fernández ◽  
J. Barquín ◽  
M. Álvarez-Cabria ◽  
F. J. Peñas

Abstract. Riparian zone delineation is a central issue for managing rivers and adjacent areas; however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is usually only available for populated areas at risk of flooding. In this work we created several floodplain surfaces by means of two different GIS-based geomorphological approaches using digital elevation models (DEMs), in an attempt to find hydrologically meaningful potential riparian zones for river networks at the river basin scale. Objective quantification of the performance of the two geomorphologic models is provided by analysing coinciding and exceeding areas with respect to the 50-yr flood surface in different river geomorphological types.


Author(s):  
Carlos H. Grohmann

Global Digital Elevation Models (GDEMs) are datasets of vital importance for regional-scale analysis in areas such as geomorphology, [paleo]climatology, oceanography and biodiversity. In this work I present a comparative assessment of the datasets ETOPO1 (1’ resolution), GTOPO30, GLOBE, SRTM30 PLUS, GMTED2010 and ACE2 (30”) against the altitude of the world’s ultra prominent peaks. GDEMs’ elevations show an expected tendency of underestimating the peak’s altitude, but differences reach 3,500 m. None of the GDEMs captures the full range of elevation on Earth and they do not represent well the altitude of the most prominent peaks. Some of these problems could be addressed with the release of NASADEM, but the smoothing effect caused by moving-window resampling can only be tackled by using new techniques, such as scale-adaptative kernels and curvature-based terrain generalisation.


2020 ◽  
Author(s):  
Thomas Pollhammer ◽  
Bernhard Salcher ◽  
Florian Kober ◽  
Gaudenz Deplazes

<p>Glacial and glaciofluvial sediments of the North Alpine Foreland have been subject to extensive quaternary research for more than a century. Nevertheless, a regional scale stratigraphic model has not been proposed since Penk & Brückner (1909). Since then, geological evidence were fit into local stratigraphic classifications, leading to severe inconsistencies across different countries/regions. The following study aims to solve inconsistencies by a morphostratigraphical approach, applying innovative methods utilizing new high-resolution digital elevation models, existing geodata and information from literature.</p><p>First, the abundant information from literature was reviewed to create a synopsis of commonly used terrace stratigraphic classifications. Second, geologic maps and (high-resolution) digital elevation models were compiled in a GIS database. To process this data, a new toolset was developed (using software R), fitting the requirements of morphostratigraphic analyses. These mainly involve the processing and statistic evaluation of terrace-top surfaces. Based on these analyses, we discussed fluvial, glacial and geodynamic factors, controlling the observed hypsometric parameters (concavity, slope, relative heights). To stratigraphically compare results across catchments and regions, the modern Danube and Rhine River were used as “fixed” base-levels to which tributary terrace tops were extrapolated. Terrace elevations above these base-levels were used as proxy to evaluate the rare absolute and otherwise inferred terrace ages from literature. Derived morphostratigraphic evidence provides an objective basis to discuss and harmonise the highly complex and diverging stratigraphic classification schemes across North Alpine Foreland regions.</p><p>Penck, A., & Brückner, E. (1909). Die Alpen im Eiszeitalter. Leipzig: Tauchnitz.</p>


Author(s):  
T. Kramm ◽  
D. Hoffmeister

<p><strong>Abstract.</strong> The resolution and accuracy of digital elevation models (DEMs) have direct influence on further geoscientific computations like landform classifications and hydrologic modelling results. Thus, it is crucial to analyse the accuracy of DEMs to select the most suitable elevation model regarding aim, accuracy and scale of the study. Nowadays several worldwide DEMs are available, as well as DEMs covering regional or local extents. In this study a variety of globally available elevation models were evaluated for an area of about 190,000&amp;thinsp;km<sup>2</sup>. Data from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m, Shuttle Radar Topography Mission (SRTM) 30&amp;thinsp;m and 90&amp;thinsp;m, Advanced Land Observing Satellite (ALOS) World 3D 30&amp;thinsp;m and TanDEM-X WorldDEM&amp;trade; &amp;ndash; 12&amp;thinsp;m and 90&amp;thinsp;m resolution were obtained. Additionally, several very high resolution DEM data were derived from stereo satellite imagery from SPOT 6/7 and Pléiades for smaller areas of about 100&amp;ndash;400&amp;thinsp;km<sup>2</sup> for each dataset. All datasets were evaluated with height points of the Geoscience Laser Altimeter System (GLAS) instrument aboard the NASA Ice, Cloud, and land Elevation (ICESat) satellite on a regional scale and with nine very high resolution elevation models from UAV-based photogrammetry on a very large scale. For all datasets the root mean square error (RMSE) and normalized median absolute deviation (NMAD) was calculated. Furthermore, the association of errors to specific terrain was conducted by assigning these errors to landforms from the topographic position index (TPI), topographic roughness index (TRI) and slope. For all datasets with a global availability the results show the highest overall accuracies for the TanDEM-X 12&amp;thinsp;m (RMSE: 2.3&amp;thinsp;m, NMAD: 0.8&amp;thinsp;m). The lowest accuracies were detected for the 30&amp;thinsp;m ASTER GDEM v3 (RMSE: 8.9&amp;thinsp;m, NMAD: 7.1&amp;thinsp;m). Depending on the landscape the accuracies are higher for all DEMs in flat landscapes and the errors rise significantly in rougher terrain. Local scale DEMs derived from stereo satellite imagery show a varying overall accuracy, mainly depending on the topography covered by the scene.</p>


2011 ◽  
Vol 4 ◽  
pp. 2277-2286 ◽  
Author(s):  
Hiep-Thuan Do ◽  
Sébastien Limet ◽  
Emmanuel Melin

Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 256
Author(s):  
Maria P. Kakavas ◽  
Konstantinos G. Nikolakopoulos

The scope of this paper is to summarize previous research pertaining to the use of digital elevation models (DEMs) and digital terrain models (DTMs) in the study of rockfalls and landslides. Research from 1983 to 2020 was surveyed in order to understand how the spatial resolution of DEMs and DTMs affects landslide detection, validation, and mapping. Another major question examined was the relationship between the DEM resolution and the extent of the rockfall or landslide event. It emerged from the study that, for landslides, the majority of researchers used DEMs with a spatial resolution of between 10 m and 30 m, while for rockfalls, they used DEMs with a spatial resolution of between 5 m and 20 m. We concluded that DEMs with a very high resolution (less than 5 m) are suitable for local-scale occurrences, while medium-resolution (from 20 m to 30 m) DEMs are suitable for regional-scale events. High resolution is associated with high accuracy and detailed structural characteristics, while medium accuracy better illustrates the topographic features. A low pixel size (more than 90 m) is not recommended for this type of research. Susceptibility maps, inventory maps, hazard risk zones, and vulnerability assessments are some of the main tools used in landslide/rockfall investigations, and topographic indexes, methods, models, and software optimize the reliability of the results. All of these parameters are closely related to DEMs and DTMs as the cell size affects the credibility of the final outcome.


2021 ◽  
Vol 14 (3) ◽  
pp. 1530
Author(s):  
Ênio Gomes Flôr Souza ◽  
Antônio Henrique Cardoso do Nascimento ◽  
Ellen Abreu da Cruz ◽  
Dalbert De Freitas Pereira ◽  
Raquel Soares da Silva ◽  
...  

A bacia hidrográfica do Riacho do Navio, em Pernambuco, tem importante papel ao atender as demandas hídricas de animais, culturas agrícolas e da população local, sendo fundamental estudá-la de maneira mais específica, a fim de que sejam geradas informações que subsidiem a gestão de seus recursos ambientais. O objetivo deste estudo foi delimitar a bacia hidrográfica do Riacho do Navio e descrever suas características morfométricas (forma, rede de drenagem e relevo) a partir de dados Shuttle Radar Topography Mission (SRTM) processados no programa livre Quantum GIS (QGIS), via a ferramenta Terrain Analysis Using Digital Elevation Models (TauDEM). A bacia em questão possui 3.312,97 km2, sendo considerada de quinta ordem, com densidade de drenagem de 0,50 km km-2. Observou-se que a declividade média foi de 5,23%, sendo que mais de 86,61% da área da bacia apresentou declividades menores que 8%. O fator de forma, o coeficiente de compacidade e o índice de circularidade atingiram valores de 0,29; 2,10 e 0,22, indicando que a bacia possui formato alongado e, por conseguinte, baixa tendência a enchentes. Por outro lado, a sinuosidade e a declividade média do álveo podem favorecer a ocorrência de cheias em situações de chuvas intensas. O uso do QGIS e do TauDEM para tratamento de imagens SRTM se mostrou uma ferramenta eficiente, podendo auxiliar na gestão e no gerenciamento dos recursos hídricos da bacia do Riacho do Navio.   Delimitation and morphometric characterization of the hydrographic basin of Riacho do Navio, Pernambuco, based on SRTM data processed at QGIS A B S T R A C TThe Riacho do Navio watershed, in Pernambuco, has an important role in meeting the water demands of animals, agricultural crops and the local population, and it is essential to study it more specifically, in order to generate information that supports the management of its environmental resources. The objective of this study was to delimit the Riacho do Navio watershed and describe its morphometric characteristics (shape, drainage network and relief) from Shuttle Radar Topography Mission (SRTM) data, processed in the free program Quantum GIS (QGIS), via the Terrain Analysis Using Digital Elevation Models (TauDEM) tool. The watershed in question has 3,312.97 km2, being considered of fifth order, with drainage density of 0.50 km km-2. It was observed that the average slope was 5.23%, with more than 86.61% of the watershed area showing slopes less than 8%. The shape factor, the compactness coefficient and the circularity index reached values of 0.29; 2.10 and 0.22, indicating that the watersehd has an elongated shape and, therefore, low tendency to flooding. On the other hand, the sinuosity and the average slope of the riverbed can favor the occurrence of floods in situations of intense rains. The use of QGIS and TauDEM for the treatment of SRTM images proved to be an efficient tool, which can assist in the management and administration of water resources in the Riacho do Navio watershed.Keywords: physiographic analysis, Hydrology, digital elevation model, Semiarid, TauDEM.


2002 ◽  
Vol 38 (11) ◽  
pp. 13-1-13-8 ◽  
Author(s):  
Francisco Olivera ◽  
Mary S. Lear ◽  
James S. Famiglietti ◽  
Kwabena Asante

Sign in / Sign up

Export Citation Format

Share Document