scholarly journals Hydrological response to warm and dry weather: do glaciers compensate?

2021 ◽  
Author(s):  
Marit Van Tiel ◽  
Anne F. Van Loon ◽  
Jan Seibert ◽  
Kerstin Stahl

Abstract. Warm and dry summer days can lead to low streamflow due to a lack of rainfall and increased evaporation. In glacierized catchments, however, such periods can lead to a very different hydrological response as glaciers can supply an increased amount of meltwater, thereby compensating for the rainfall deficits. Here, we analyzed glacier-fed streamflow responses to warm and dry periods (WD) in long-term streamflow observations (> 50 years). WD events during summer (June–September) were analyzed for catchments with varying glacier cover in Canada, Norway and the European Alps. WD events were defined by days with temperatures above a daily varying threshold, based on the 80th percentile of the respective long-term temperature data for that day in the year, and daily precipitation sums below a fixed threshold (

2021 ◽  
Vol 25 (6) ◽  
pp. 3245-3265
Author(s):  
Marit Van Tiel ◽  
Anne F. Van Loon ◽  
Jan Seibert ◽  
Kerstin Stahl

Abstract. Warm and dry summer days can lead to low streamflow due to a lack of rainfall and increased evaporation. In glacierized catchments, however, such periods can lead to a very different hydrological response as glaciers can supply an increased amount of meltwater, thereby compensating for the rainfall deficits. Here, we analyzed glacier-fed streamflow responses to warm and dry (WD) periods in long-term streamflow observations (>50 years). WD events during summer (June–September) were analyzed for catchments with varying glacier cover in western Canada, southwestern Norway, and the European Alps. WD events were defined by days with temperatures above a daily varying threshold, based on the 80th percentile of the respective long-term temperature data for that day in the year, and daily precipitation sums below a fixed threshold (<2 mm d−1) for a minimum duration of 7 d. Streamflow responses to these WD events were expressed as level of compensation (C) and were calculated as the event streamflow relative to the long-term streamflow regime. C≥100 % indicates that increased melt and other catchment storages could compensate, or even overcompensate, the rainfall deficit and increased evaporation. Results showed a wide range of compensation levels, both between catchments and between different WD events in a particular catchment. C was, in general, higher than 100 % for catchments with a relative glacier cover higher than 5 %–15 %, depending on region and month. June was the month with highest compensation levels, but this was likely more influenced by snowmelt than by glacier melt. For WD events in September, C was still higher than 100 % in many catchments, which likely indicates the importance of glacier melt as a streamflow contributor in late summer. There was a considerable range in C of different WD events for groups of catchments with similar glacier cover. This could be partly explained by antecedent conditions, such as the amount of snow fallen in the previous winter and the streamflow conditions 30 d before the WD event. Some decreasing trends in C were evident, especially for catchments in western Canada and the European Alps. Overall, our results suggest that glaciers do not compensate straightforwardly, and the range in compensation levels is large. The different streamflow components – glacier, snow and rain – and their variations are important for the buffering capacity and the compensating effect of glaciers in these high mountain water systems.


Data in Brief ◽  
2021 ◽  
Vol 36 ◽  
pp. 107027
Author(s):  
Anna Papazoglou ◽  
Muhammad Imran Arshaad ◽  
Magdalena Elisabeth Siwek ◽  
Christina Henseler ◽  
Johanna Daubner ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ranjini Ray ◽  
Atreyee Bhattacharya ◽  
Gaurav Arora ◽  
Kushank Bajaj ◽  
Keyle Horton ◽  
...  

AbstractUsing information contained in the eighteenth to twentieth century British administrative documents, preserved in the National Archives of India (NAI), we present a 218-year (1729–1947 AD) record of socioeconomic disruptions and human impacts (famines) associated with ‘rain failures’ that affected the semi-arid regions (SARs) of southern India. By mapping the southern Indian famine record onto long-term spatiotemporal measures of regional rainfall variability, we demonstrate that the SARs of southern India repeatedly experienced famines when annual rainfall reduced by ~ one standard deviation (1 SD), or more, from long-term averages. In other words, ‘rain failures’ listed in the colonial documents as causes of extreme socioeconomic disruptions, food shortages and human distress (famines) in the southern Indian SARs were fluctuations in precipitation well within the normal range of regional rainfall variability and not extreme rainfall deficits (≥ 3 SD). Our study demonstrates that extreme climate events were not necessary conditions for extreme socioeconomic disruptions and human impacts rendered by the colonial era famines in peninsular India. Based on our findings, we suggest that climate change risk assessement should consider the potential impacts of more frequent low-level anomalies (e.g. 1 SD) in drought prone semi-arid regions.


2014 ◽  
Vol 2 (3) ◽  
pp. 33-46
Author(s):  
Zuzanna Bielec-Bąkowska

AbstractThis paper addresses spatial and temporal variability in the occurrence of thunderstorms and related precipitation in southern Poland between 1951 and 2010. The analysis was based on thunderstorm observations and daily precipitation totals (broken down into the few ranges) from 15 meteorological stations. It was found that precipitation accompanied an overwhelming majority of thunderstorms. The most frequent range of thunderstorm precipitation totals was 0.1–10.0 mm which accounted for 60% of all values while precipitation higher than 20.0 mm accounted only for ca. 8%. During the study period, long-term change in the number of days with thunderstorm precipitation within a certain range displayed no clear-cut trends. Exceptions included: 1) an increase in the number of days with thunderstorm precipitation in the lowest range of totals (0.1–10.0 mm) at Katowice, Tarnów, Rzeszów and Lesko and decrease at Mt. Kasprowy Wierch, 2) an increase in the range 10.1–20.0 mm at Zakopane and 20.1–30.0 mm at Opole, 3) a decrease of the top range (more than 30.0 mm) at Mt. Śnieżka. It was found that the heaviest thunderstorm precipitation events, i.e. totalling more than 30 mm, and those events that covered all or most of the study area, occurred at the time of air advection from the southern or eastern sectors and a passage of atmospheric fronts.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Dana Halmova ◽  
Pavla Pekarova ◽  
Juraj Olbrimek ◽  
Pavol Miklanek ◽  
Jan Pekar

The aim of this paper is to investigate the statistical aspects of multiannual variability of precipitation at the Hurbanovo station, Slovakia, over 140 years (1872–2011). We compare the long-term variability of annual precipitation for Hurbanovo (Slovakia), Brno (Czech Republic), Vienna (Austria), and Mosonmagyarovar (Hungary) stations using autocorrelation and spectral analysis methods. From the long-term point of view, there is no consistent trend in the annual precipitation; only a multiannual variability has been detected. Consequently we identify changes in the distribution of annual maximum daily precipitation for Hurbanovo during different periods for winter-spring and summer-autumn seasons using histograms, empirical exceedance curves, and frequency curves of daily precipitation. Next, we calculate the periods of days without precipitation exceeding 29 days between 1872 and 2011. The longest period of days without precipitation was 83 days in 1947. The statistical analysis does not confirm our initial hypothesis that neither high daily precipitation (over 51.2 mm per day) nor long dry periods (more than 50 days without precipitation) would occur more frequently nowadays. We assume that the decrease in annual precipitation over the period 1942–2011 (compared to 1872–1941) is caused by the less frequent occurrence of daily precipitation between 0.4 and 25.6 mm.


2016 ◽  
Vol 36 (13) ◽  
pp. 4393-4405 ◽  
Author(s):  
Florence De Longueville ◽  
Yvon-Carmen Hountondji ◽  
Issa Kindo ◽  
François Gemenne ◽  
Pierre Ozer

2020 ◽  
Vol 24 (2) ◽  
pp. 919-943 ◽  
Author(s):  
Steefan Contractor ◽  
Markus G. Donat ◽  
Lisa V. Alexander ◽  
Markus Ziese ◽  
Anja Meyer-Christoffer ◽  
...  

Abstract. We present a new global land-based daily precipitation dataset from 1950 using an interpolated network of in situ data called Rainfall Estimates on a Gridded Network – REGEN. We merged multiple archives of in situ data including two of the largest archives, the Global Historical Climatology Network – Daily (GHCN-Daily) hosted by National Centres of Environmental Information (NCEI), USA, and one hosted by the Global Precipitation Climatology Centre (GPCC) operated by Deutscher Wetterdienst (DWD). This resulted in an unprecedented station density compared to existing datasets. The station time series were quality-controlled using strict criteria and flagged values were removed. Remaining values were interpolated to create area-average estimates of daily precipitation for global land areas on a 1∘ × 1∘ latitude–longitude resolution. Besides the daily precipitation amounts, fields of standard deviation, kriging error and number of stations are also provided. We also provide a quality mask based on these uncertainty measures. For those interested in a dataset with lower station network variability we also provide a related dataset based on a network of long-term stations which interpolates stations with a record length of at least 40 years. The REGEN datasets are expected to contribute to the advancement of hydrological science and practice by facilitating studies aiming to understand changes and variability in several aspects of daily precipitation distributions, extremes and measures of hydrological intensity. Here we document the development of the dataset and guidelines for best practices for users with regards to the two datasets.


2020 ◽  
Vol 730 ◽  
pp. 138926 ◽  
Author(s):  
Ashley A. Coble ◽  
Holly Barnard ◽  
Enhao Du ◽  
Sherri Johnson ◽  
Julia Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document