scholarly journals Spontaneous long-term and urethane induced hippocampal EEG power, activity and temperature data from mice lacking the Cav3.2 voltage-gated Ca2+ channel

Data in Brief ◽  
2021 ◽  
Vol 36 ◽  
pp. 107027
Author(s):  
Anna Papazoglou ◽  
Muhammad Imran Arshaad ◽  
Magdalena Elisabeth Siwek ◽  
Christina Henseler ◽  
Johanna Daubner ◽  
...  
2016 ◽  
Vol 36 (13) ◽  
pp. 4393-4405 ◽  
Author(s):  
Florence De Longueville ◽  
Yvon-Carmen Hountondji ◽  
Issa Kindo ◽  
François Gemenne ◽  
Pierre Ozer

2020 ◽  
Vol 71 (14) ◽  
pp. 4345-4358
Author(s):  
Haiwen Zhang ◽  
Hao Feng ◽  
Junwen Zhang ◽  
Rongchao Ge ◽  
Liyuan Zhang ◽  
...  

Abstract K+/Na+ homeostasis is the primary core response for plant to tolerate salinity. Halophytes have evolved novel regulatory mechanisms to maintain a suitable K+/Na+ ratio during long-term adaptation. The wild halophyte Hordeum brevisubulatum can adopt efficient strategies to achieve synergistic levels of K+ and Na+ under high salt stress. However, little is known about its molecular mechanism. Our previous study indicated that HbCIPK2 contributed to prevention of Na+ accumulation and K+ reduction. Here, we further identified the HbCIPK2-interacting proteins including upstream Ca2+ sensors, HbCBL1, HbCBL4, and HbCBL10, and downstream phosphorylated targets, the voltage-gated K+ channel HbVGKC1 and SOS1-like transporter HbSOS1L. HbCBL1 combined with HbCIPK2 could activate HbVGKC1 to absorb K+, while the HbCBL4/10–HbCIPK2 complex modulated HbSOS1L to exclude Na+. This discovery suggested that crosstalk between the sodium response and the potassium uptake signaling pathways indeed exists for HbCIPK2 as the signal hub, and paved the way for understanding the novel mechanism of K+/Na+ homeostasis which has evolved in the halophytic grass.


1974 ◽  
Vol 4 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Clayton H. Reitan

Mean monthly temperatures for the Northern Hemisphere were determined for the years 1955 through 1968 following the same procedures used by H. C. Willett and J. M. Mitchell, Jr., in their studies of long-term trends. It was found that the downward trend they reported starting in the 1940s continued, though interrupted, into the 1960s.The temperature data when combined with radiation data and other components of the hemispheric energy budget led to the formulation of the response ratio, the relationship between change in incoming solar radiation and change in temperature. When this response ratio was applied to the reported trends in direct solar radiation and to the decrease in direct solar radiation following the eruption of Agung in 1963, a probable cause-effect relationship was suggested.


2007 ◽  
Vol 27 (13) ◽  
pp. 1809-1823 ◽  
Author(s):  
M. Staudt ◽  
M. J. Esteban-Parra ◽  
Y. Castro-Díez
Keyword(s):  

2016 ◽  
Author(s):  
Klaus Gierens ◽  
Kostas Eleftheratos

Abstract. In the present study we explore the capability of the intercalibrated HIRS brightness temperature data at channel 12 (the HIRS water vapour channel; T12) to reproduce ice supersaturation in the upper troposphere during the period 1979–2014. Focus is given on the transition from the HIRS 2 to the HIRS 3 instrument in the year 1999, which involved a shift of the central wavelength in channel 12 from 6.7 µm to 6.5 µm. It is shown that this shift produced a discontinuity in the time series of low T12 values ( 70 %) in the year 1999 which prevented us from maintaining a continuous, long term time series of ice saturation throughout the whole record (1979–2014). We present that additional corrections are required to the low T12 values in order to bring HIRS 3 levels down to HIRS 2 levels. The new corrections are based on the cumulative distribution functions of T12 from NOAA 14 and 15 satellites (that is, when the transition from HIRS 2 to HIRS 3 occurred). By applying these corrections to the low T12 values we show that the discontinuity in the time series caused by the transition of HIRS 2 to HIRS 3 is not apparent anymore when it comes to calculate extreme UTHi cases. We come up with a new time series for values found at the low tail of the T12 distribution, which can be further exploited for analyses of ice saturation and supersaturation cases. The validity of the new method with respect to typical intercalibration methods such as regression-based methods is presented and discussed.


2012 ◽  
Vol 14 ◽  
pp. 34-38 ◽  
Author(s):  
S. T. Toczko ◽  
A. J. Kopf ◽  
E. Araki ◽  

The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a major long-term drilling project designed to investigate the seismogenic behavior of subduction zone plate boundaries. Integrated Ocean Drilling Program (IODP) Expedition 332 deployed a long-term borehole monitoring system (LTBMS), an advanced Circulation Obviation Retrofit Kit (CORK)-type observatory. The recovery of pressure and temperature data from a temporary observatory (SmartPlug) deployed during IODP Expedition 319 helped prove the SmartPlug concept. The permanent LTBMS was deployed n the upper 1000 m of Site C0002, while the SmartPlug was recovered from Site C0010 and replaced with a more capable "GeniusPlug", incorporating an extension with a geochem-ical sampler and biological experiment to the original SmartPlug design. SmartPlug pressure and temperature data showed signs of transient pressure events. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.14.04.2012" target="_blank">10.2204/iodp.sd.14.04.2012</a>


Sign in / Sign up

Export Citation Format

Share Document