scholarly journals Analytical model captures intratidal variation in salinity in a convergent, well-mixed estuary

2019 ◽  
Vol 23 (10) ◽  
pp. 4309-4322
Author(s):  
Yanwen Xu ◽  
Antonius J. F. Hoitink ◽  
Jinhai Zheng ◽  
Karl Kästner ◽  
Wei Zhang

Abstract. Knowledge of the processes governing salt intrusion in estuaries is important, since it influences the eco-environment of estuaries as well as its water resource potential in many ways. Analytical models of salinity variation offer a simple and efficient method for studying salt intrusion in estuaries. In this paper, an unsteady analytical solution is presented to predict the spatio-temporal variation in salinity in convergent estuaries. It is derived from a one-dimensional advection–diffusion equation for salinity, adopting a constant mixing coefficient and a single-frequency tidal wave, which can directly reflect the influence of the tidal motion and the interaction between the tide and runoff. The deduced analytical solution is illustrated with an application to the Humen estuary of the Pearl River Delta (PRD) and proves to be an efficient and accurate approach for predicting the salt intrusion in convergent estuaries. The unsteady analytical solution is tested against observations from six study sites to validate its capability to predict intratidal variation in salt intrusion. The results show that the proposed unsteady analytical solution can be successfully used to reproduce the spatial distribution and temporal processes governing salinity dynamics in convergent, well-mixed estuaries. The proposed method provides a quick and convenient approach for deciding on water-fetching methods to make good use of water resources.

2019 ◽  
Author(s):  
Yanwen Xu ◽  
Antonius J. F. Hoitink ◽  
Jinhai Zheng ◽  
Wei Zhang

Abstract. Knowledge of the processes governing salt intrusion in estuaries is important since it influences the eco-environment of estuaries as well as its water resource potential in many ways. Analytical models of salinity variation offer a simple and efficient method to study salt intrusion in estuaries. In this paper, an unsteady analytical solution is presented to simulate the spatial-temporal variation of salinity in convergent estuaries. It is derived from a one-dimensional advection-diffusion equation for salinity adopting a constant mixing coefficient and a single-frequency tidal wave. Compared with steady-state solutions, it can directly reflect the influence of the tide and the interaction between the tide and runoff. The deduced analytical solution is illustrated with an application to the Humen estuary of the Pearl River Delta (PRD), and proves to be an efficient and accurate approach to predicate the salt intrusion in convergent estuaries. The unsteady analytical solution is tested against six surveys made at six study sites, to validate its capability of predicating salt intrusion variation. The results show that the proposed unsteady analytical solution can be successfully used to reproduce the spatial distribution and temporal processes governing salinity dynamics in convergent, well-mixed estuaries. Meanwhile, this predictive equation provides a quick and convenient approach to decide upon water fetching works to make good use of water resources.


2019 ◽  
Vol 396 ◽  
pp. 91-98 ◽  
Author(s):  
Régis S. Quadros ◽  
Glênio A. Gonçalves ◽  
Daniela Buske ◽  
Guilherme J. Weymar

This work presents an analytical solution for the transient three-dimensional advection-diffusion equation to simulate the dispersion of pollutants in the atmosphere. The solution of the advection-diffusion equation is obtained analytically using a combination of the methods of separation of variables and GILTT. The main advantage is that the presented solution avoids a numerical inversion carried out in previous works of the literature, being by this way a totally analytical solution, less than a summation truncation. Initial numerical simulations and statistical comparisons using data from the Copenhagen experiment are presented and prove the good performance of the model.


Author(s):  
Mandar Deshpande ◽  
Laxman Saggere

Models for simple closed-form analytical solutions for accurately predicting static deflections of circular thin-film piezoelectric microactuators are very useful in design and optimization of a variety of MEMS sensors and actuators utilizing piezoelectric actuators. While closed-form solutions treating actuators with simple geometries such as cantilevers and beams are available, simple analytical models treating circular bending-type actuators commonly used in MEMS applications are generally lacking. This paper presents a closed-form analytical solution for accurately estimating the deflections and the volume displacements of a circular multi-layer piezoelectric actuator under combined voltage and pressure loading. The model for the analytical solution presented in this paper, which is based on classical laminated plate theory, allows for inclusion of multiple layers and non-uniform diameters of various layers in the actuator including bonding and electrode layers, unlike other models previously reported in the literature. The analytical solution presented is validated experimentally as well as through a finite element solution and excellent experiment-model correlation within 1% variation is demonstrated. General guidelines for optimization of circular piezoelectric actuator are also discussed. The utility of the model for design optimization of a multi-layered piezoelectric actuator is demonstrated through a numerical example wherein the dimensions of a test actuator are optimized to improve the displaced volume by three-fold under combined voltage and resisting pressure loads.


2020 ◽  
Author(s):  
Robert Weber ◽  
Zohreh Adavi ◽  
Marcus Franz Glaner

<p>Water vapor is one of the most variable components in the Earth’s atmosphere, which has a significant role in the formation of clouds, rain and snow, air pollution and acid rain. Therefore, increasing the accuracy of estimated water vapor can lead to more accurate predictions of severe weather, upcoming storms, and reducing natural hazards. In recent years, GNSS has turned out to be a valuable tool for remotely sensing the atmosphere. GNSS tomography is one of the most valuable tools to reconstruct the Spatio-temporal structure of the troposphere. However, locating dual-frequency receivers with a sufficient spatial resolution for GNSS tomography of a few tens of kilometers is not economically feasible. Therefore, in this research, the feasibility of using single-frequency receivers in GNSS tomography as a possible alternative approach has been investigated. The accuracy of the reconstructed model of water-vapor distribution using low-cost receivers is verified using radiosonde measurements in the area of the EPOSA (Echtzeit Positionierung Austria) GNSS network, which is mostly located in the east part of Austria for the period DoYs 233-246 in 2019.</p>


2021 ◽  
Author(s):  
Christopher Mfum Owusu-Asenso ◽  
Julius Abraham Addo Mingle ◽  
David Weetman ◽  
Yaw Asare Afrane

Abstract Background: Vector control is the main intervention to control arboviral diseases transmitted by Aedes mosquitoes because for most there are no effective vaccines or treatment. This vector control relies heavily on the use of insecticides, effectiveness of which may be impacted by resistance. In addition, rational insecticide application requires detailed knowledge of vector distribution, dynamics, resting, and feeding behaviours, which are poorly understood for Aedes vectors in Africa. This study investigated the spatio-temporal distribution and insecticide resistance status of Ae. aegypti from across ecological extremes of GhanaMethods: Immature mosquitoes were sampled from containers in and around human dwellings at each of seven study sites in urban, suburban, and rural areas of Ghana. Adult Aedes mosquitoes were sampled indoor and outdoor using Biogent sentinel-2 mosquito traps, human landing catches, and prokopack aspiration. Distributions of immatures and adult Aedes mosquitoes were determined indoors and outdoors during dry and rainy seasons at all sites. Phenotypic resistance status of Aedes mosquitoes to insecticides was determined using WHO bioassays. Host blood meal source was determined by PCR.Results: A total of 16,711 immature Aedes were sampled, with over 70% found in car tires. Significantly more breeding containers had Aedes immatures during the rainy season 70.95% (11,856) compared to the dry season 29.05% (4,855). A total of 1,895 adult Aedes mosquitos were collected, including Ae. aegypti (97.8%), Ae. africanus (2.1%) and Ae. Luteocephalus (0.1%). Indoor sampling of adult Aedes mosquitoes yielded a total of 381 (20.1%) and outdoor a total of 1,514 (79.9%) (z = -5.427; p = 0.0000) over the entire sampling period. Aedes aegypti populations were resistant to DDT at all study sites. Vectors showed suspected resistance to Bendiocarb (96-97%), Permethrin (90-96%) and Deltamethrin (91-96%) and were susceptible to the organophosphate malathion from all study sites.Blood meal analysis showed that the Aedes mosquitoes were mostly anthropophilic with HBI of 0.9 i.e. [(human = 90%), (human and dog = 5%), (dog and cow = 5%)].Conclusion: Aedes mosquitoes were found at high densities in all ecological zones of Ghana. Resistance to pyrethroids and carbamates may limit control efficacy and requires careful monitoring.


Sign in / Sign up

Export Citation Format

Share Document