scholarly journals A coupled atmospheric–hydrologic modeling system with variable grid sizes for rainfall–runoff simulation in semi-humid and semi-arid watersheds: how does the coupling scale affects the results?

2020 ◽  
Vol 24 (8) ◽  
pp. 3933-3949 ◽  
Author(s):  
Jiyang Tian ◽  
Jia Liu ◽  
Yang Wang ◽  
Wei Wang ◽  
Chuanzhe Li ◽  
...  

Abstract. The coupled atmospheric–hydrologic modeling system is an effective way to improve the accuracy of rainfall–runoff modeling and extend the lead time in real-time flood forecasting. The aim of this study is to explore the appropriate coupling scale of the coupled atmospheric–hydrologic modeling system, which is established by the Weather Research and Forecasting (WRF) model and the gridded Hebei model with three different sizes (1 km×1 km, 3 km×3 km and 9 km×9 km). The Hebei model is a conceptual rainfall–runoff model designed to describe a mixed runoff generation mechanism, including both storage excess and infiltration excess, in the semi-humid and semi-dry area of northern China. The soil moisture storage capacity and infiltration capacity of different grids in the gridded Hebei model are obtained and dispersed using the topographic index. The lumped Hebei model is also used to establish the lumped atmospheric–hydrologic coupled system as a reference system. Four 24 h storm events occurring at two small- and medium-scale sub-watersheds in northern China are selected as case studies. Contrastive analyses of the flood process simulations from the gridded and lumped systems are carried out. The results show that the flood simulation results may not always be improved with higher-dimension precision and more complicated system, and the grid size selection has a strong relationship with the rainfall evenness. For the storm events with uniform spatial distribution, the coupling scale has less impact on flood simulation results, and the lumped system also performs well. For the storm events with uneven spatiotemporal distribution, the corrected rainfall can improve the simulation results significantly, and higher resolution leads to better flood process simulation. The results can help to establish the appropriate coupled atmospheric–hydrologic modeling system to improve the flood forecasting accuracy.

2020 ◽  
Author(s):  
Jiyang Tian ◽  
Jia Liu ◽  
Yang Wang ◽  
Wei Wang ◽  
Chuanzhe Li ◽  
...  

Abstract. The coupled atmospheric-hydrologic modeling system is an effective way in improving the accuracy of rainfall-runoff modeling and extending the lead time in real-time flood forecasting. The aim of this study is to explore the appropriate coupling scale of the coupled atmospheric-hydrologic modeling system, which is established by the Weather Research and Forecasting (WRF) model and the gridded Hebei model with three different sizes (1 × 1 km, 3 × 3 km and 9 × 9 km). The soil moisture storage capacity and infiltration capacity of different grids in the gridded Hebei model are obtained and dispersed using the topographic index. The lumped Hebei model is also used to establish the lumped atmospheric-hydrologic coupled system as a reference system. Four 24 h storm events occurring at two small and medium-scale sub-watersheds in northern China are selected as cases study. Contrastive analyses of the flood process simulations from the gridded and lumped systems are carried out. The results show that the flood simulation results may not always be improved with higher dimension precision and more complicated system, and the grid size selection has a great relationship with the rainfall evenness. For the storm events with uniform spatial distribution, the coupling scale has less impact on flood simulation results, and the lumped system also performs well. For the storm events with uneven spatiotemporal distribution, the corrected rainfall can improve the simulation results significantly, and higher resolution lead to better flood process simulation. The results can help to establish the appropriate coupled atmospheric-hydrologic modeling system to improve the flood forecasting accuracy.


2005 ◽  
Vol 36 (2) ◽  
pp. 175-192 ◽  
Author(s):  
Caihong Hu ◽  
Shenglian Guo ◽  
Lihua Xiong ◽  
Dingzhi Peng

The Xinanjiang model has been widely used in the humid regions in southern China as a basic tool for rainfall–runoff simulation, flood forecasting and water resources planning and management. However, its performance in the arid and semi-arid regions of northern China is usually not so good as in the humid regions. A modified Xinanjiang model, in which runoff generation in the watershed is based on both infiltration excess and saturation excess runoff mechanisms, is presented and discussed. Three different watersheds are selected for assessing and comparing the performance of the Xinanjiang model, the modified Xinanjiang model, the VIC model and the TOPMODEL in rainfall–runoff simulation. It is found that the modified Xinanjiang model performs better than the Xinanjiang model, and the models considering the Horton and Dunne runoff generation mechanisms are slightly better than those models considering the single runoff generation mechanism in semi-arid areas. It is suggested that the infiltration excess runoff mechanism should be included in rainfall–runoff models in arid and semi-arid regions.


2006 ◽  
Vol 10 (6) ◽  
pp. 783-788 ◽  
Author(s):  
Th. Wöhling ◽  
F. Lennartz ◽  
M. Zappa

Abstract. Flood forecasting is of increasing importance as it comes to an increasing variability in global and local climates. But rainfall-runoff models are far from being perfect. In order to achieve a better prediction for emerging flood events, the model outputs have to be continuously updated. This contribution introduces a rather simple, yet effective updating procedure for the conceptual semi-distributed rainfall-runoff model PREVAH, whose runoff generation module relies on similar algorithms as the HBV-Model. The current conditions of the system, i.e. the contents of the upper soil reservoirs, are updated by the proposed method. The testing of the updating procedure on data from two mountainous catchments in Switzerland reveals a significant increase in prediction accuracy with regards to peak flow.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1269 ◽  
Author(s):  
Yun Choi ◽  
Mun-Ju Shin ◽  
Kyung Kim

The choice of the computational time step (dt) value and the method for setting dt can have a bearing on the accuracy and performance of a simulation, and this effect has not been comprehensively researched across different simulation conditions. In this study, the effects of the fixed time step (FTS) method and the automatic time step (ATS) method on the simulated runoff of a distributed rainfall–runoff model were compared. The results revealed that the ATS method had less peak flow variability than the FTS method for the virtual catchment. In the FTS method, the difference in time step had more impact on the runoff simulation results than the other factors such as differences in the amount of rainfall, the density of the stream network, or the spatial resolution of the input data. Different optimal parameter values according to the computational time step were found when FTS and ATS were used in a real catchment, and the changes in the optimal parameter values were smaller in ATS than in FTS. The results of our analyses can help to yield reliable runoff simulation results.


2000 ◽  
Vol 44 ◽  
pp. 217-222
Author(s):  
Y. TACHIKAWA ◽  
M. FUKUMITSU ◽  
Y. ICHIKAWA ◽  
M. SHIIBA ◽  
K. TAKARA

2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Lawal Billa ◽  
Hamid Assilzadeh ◽  
Shattri Mansor ◽  
Ahmed Mahmud ◽  
Abdul Ghazali

AbstractObserved rainfall is used for runoff modeling in flood forecasting where possible, however in cases where the response time of the watershed is too short for flood warning activities, a deterministic quantitative precipitation forecast (QPF) can be used. This is based on a limited-area meteorological model and can provide a forecasting horizon in the order of six hours or less. This study applies the results of a previously developed QPF based on a 1D cloud model using hourly NOAA-AVHRR (Advanced Very High Resolution Radiometer) and GMS (Geostationary Meteorological Satellite) datasets. Rainfall intensity values in the range of 3–12 mm/hr were extracted from these datasets based on the relation between cloud top temperature (CTT), cloud reflectance (CTR) and cloud height (CTH) using defined thresholds. The QPF, prepared for the rainstorm event of 27 September to 8 October 2000 was tested for rainfall runoff on the Langat River Basin, Malaysia, using a suitable NAM rainfall-runoff model. The response of the basin both to the rainfall-runoff simulation using the QPF estimate and the recorded observed rainfall is compared here, based on their corresponding discharge hydrographs. The comparison of the QPF and recorded rainfall showed R2 = 0.9028 for the entire basin. The runoff hydrograph for the recorded rainfall in the Kajang sub-catchment showed R2 = 0.9263 between the observed and the simulated, while that of the QPF rainfall was R2 = 0.819. This similarity in runoff suggests there is a high level of accuracy shown in the improved QPF, and that significant improvement of flood forecasting can be achieved through ‘Nowcasting’, thus increasing the response time for flood early warnings.


2018 ◽  
Vol 20 (4) ◽  
pp. 898-916 ◽  
Author(s):  
J. Fernández-Pato ◽  
J. L. Gracia ◽  
P. García-Navarro

Abstract In this work, a distributed two-dimensional (2D) shallow water (SW) flow model is combined with a fractional-order version of the Green-Ampt (FOGA) infiltration law to improve rainfall/runoff simulation in real catchments. The surface water model is based on a robust finite volume method on triangular grids that can handle flow over dry bed and multiple wet/dry fronts. When supplied with adequate infiltration laws, this model can provide useful information in surface hydrology. The classical Green-Ampt law is generalized by using a Caputo fractional derivative of order less than or equal to 1 in Darcy's law. The novelty of this combination is that, on the one hand, the distributed SW simulation provides a detailed surface water distribution and, on the other hand, the FOGA model offers the possibility to model infiltration rates not monotonically decreasing. In order to obtain the best results, a non-uniform order of the fractional derivative depending on the cumulative infiltration and the existence of available surface water is proposed for realistic cases. This allows significant improvement of previous published numerical results in the literature for several storm events in catchments where the infiltration process occurs.


2020 ◽  
Author(s):  
Pelagiya Belyakova ◽  
Ekaterina Vasil'eva ◽  
Andrey Aleksyuk ◽  
Vitaly Belikov ◽  
Boris Gartsman ◽  
...  

<p>In the Russian part of Western Caucasus heavy rainfall episodes frequently occur, leading to flash floods that often cause fatalities and severe damage. As soon as climate change is expected to increase the risk of flash floods it is necessary to improve flood forecasting and flood risk mapping as well as other precautionary measures. For this scope the better knowledge of catchment response on heavy precipitation is needed using rainfall-runoff simulation and further hydrodynamic modelling of inundation of urbanized areas.</p><p>There is a number of models used for flash flood simulation. In this study we used an available unit hydrograph model KW-GIUH [1] and a hydrodynamic model STREAM 2D CUDA [2]. KW-GIUH model only schematically describes overland flow over the catchment, nonlinear character of response is introduced via kinematic-wave approximation of the travel time. STREAM 2D CUDA is based on numerical solution of shallow water equations in a two-dimensional formulation according to the original algorithm using the exact solution of the Riemann problem [2], due to which the calculation is performed for the entire catchment without special allocation of the channel network. Models were tested on several flash flood events on the river Adagum (6-7 July 2012, catastrophic flood in the Krymsk town) and the Zapadny Dagomys river (25 June 2015, 24-25 October 2018, Sochi).</p><p>Comparison of simulation results was done as the same input data set was used. Input data included DEM HydroSHEDS, measured hourly precipitation and runoff volumes observed on gauges and estimated after high-water marks. Also 10-min water levels from a regional automated flood monitoring system of the Krasnodar Territory were applied. Simulated runoff volumes and peak timing were analyzed. For the Zapadny Dagomys river a forecasting calculation was done using precipitation forecast from COSMO-Ru. For the Adagum river STREAM 2D CUDA allowed to conduct an experiment to assess possible effect from potential reservoir-traps in the tributaries. The results of the rainfall-runoff simulation by the KW-GIUH model can be used as inflow to the boundary of the area for hydrodynamic modeling using STREAM 2D CUDA, also for operational use. Scenario calculations with changing hydraulic conditions at the catchment can be simulated using the STREAM 2D CUDA model itself.</p><p>The flood simulation was supported by the Russian Science Foundation under grant №17-77-30006. Data processing from an automated flood monitoring system in the Krasnodar Territory is funded by Russian Foundation for Basic Research and the Krasnodar Territory, grant № 19-45-233007.</p><p>References:</p><ol><li>Lee K.T., Cheng N.K., Gartsman B.I., Bugayets A.N. (2009): A current version of the model of a unit hydrograph and its use in Taiwan and Russia, Geography and Natural Resources, Volume 30, issue 1, pp. 79–85. https://doi.org/10.1016/j.gnr.2009.03.015</li> <li>Aleksyuk A.I., Belikov V.V. (2017): Simulation of shallow water flows with shoaling areas and bottom discontinuities, Computational Mathematics and Mathematical Physics, Volume 57, issue 2, pp. 318–339. https://doi.org/10.1134/S0965542517020026</li> </ol>


2007 ◽  
Vol 11 (4) ◽  
pp. 1515-1528 ◽  
Author(s):  
D. I. Kusumastuti ◽  
I. Struthers ◽  
M. Sivapalan ◽  
D. A. Reynolds

Abstract. The aim of this paper is to illustrate the effects of selected catchment storage thresholds upon runoff behaviour, and specifically their impact upon flood frequency. The analysis is carried out with the use of a stochastic rainfall model, incorporating rainfall variability at intra-event, inter-event and seasonal timescales, as well as infrequent summer tropical cyclones, coupled with deterministic rainfall-runoff models that incorporate runoff generation by both saturation excess and subsurface stormflow mechanisms. Changing runoff generation mechanisms (i.e. from subsurface flow to surface runoff) associated with a given threshold (i.e. saturation storage capacity) is shown to be manifested in the flood frequency curve as a break in slope. It is observed that the inclusion of infrequent summer storm events increases the temporal frequency occurrence and magnitude of surface runoff events, in this way contributing to steeper flood frequency curves, and an additional break in the slope of the flood frequency curve. The results of this study highlight the importance of thresholds on flood frequency, and provide insights into the complex interactions between rainfall variability and threshold nonlinearities in the rainfall-runoff process, which are shown to have a significant impact on the resulting flood frequency curves.


Sign in / Sign up

Export Citation Format

Share Document