Future projections of river floods over the European region using EURO-CORDEX simulations

Author(s):  
Fabio Di Sante ◽  
Erika Coppola ◽  
Filippo Giorgi

<p>In a sick world with fever caused by global warming, the hydrological cycle will experience most certainly large changes in intensity and variability. One of the most intense phenomena that will probably be affected by the climate change is the flood hazard. For a long time the stakeholders have been dedicated resources to assess the risk linked to the floods magnitude and frequencies and shaping the public infrastructures based on the assumption of their immutability. Under the effect of the climate change this assumption can be broken and a different approach should be followed to avoid large disasters and threaten to the population health. In this study the biggest ever ensemble of hydroclimatic  simulations has been used to simulate the river floods over the European regions. A river routing model derived from a distributed hydrological model (CHyM) has been forced with 44 EURO-CORDEX, 5 CMIP5 and 7 CMIP6 simulations to assess the effects of the climate change on the floods magnitude under two different scenarios (RCP2.6 and RCP8.5 for EURO-CORDEX and CMIP5, SSP126 and SSP585 for CMIP6). The impact of the climate change has been evaluated using a 100 year return period discharge indicator (Q100) obtained fitting a Gumbel distribution on the yearly peak discharge values. Results show a decrease of magnitude of flood events over the Mediterranean, Scandinavia and the North Eastern European regions. Over these two last regions the signal appear particularly robust and in contrast to the projected mean flow signal that is shown to increase by the end of the century mainly driven by the related increase of mean precipitations. The reduction of snow accumulation during winter time linked to a large increase of late winter temperatures is the main reason behind the decrease of floods over the North Eastern regions. An opposite signal is projected  instead over Great Britain, Ireland, Northern Italy and Western Europe where a robust signal of floods magnitude increase is evident driven by e the increase of extreme precipitations. All these simulation are meant to feed the impact community and to shade the light on the use of climate information for impact assessment studies.</p>

2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


Author(s):  
Balasubramani Karuppusamy ◽  
Devojit Kumar Sarma ◽  
Pachuau Lalmalsawma ◽  
Lalfakzuala Pautu ◽  
Krishanpal Karmodiya ◽  
...  

2018 ◽  
Vol 202 ◽  
pp. 166-181 ◽  
Author(s):  
Katie L. Loakes ◽  
David B. Ryves ◽  
Henry F. Lamb ◽  
Frank Schäbitz ◽  
Michael Dee ◽  
...  

2018 ◽  
Vol 38 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Gloria C. Okafor ◽  
Kingsley N. Ogbu

AbstractChanges in runoff trends have caused severe water shortages and ecological problems in agriculture and human well-being in Nigeria. Understanding the long-term (inter-annual to decadal) variations of water availability in river basins is paramount for water resources management and climate change adaptation. Climate change in Northern Nigeria could lead to change of the hydrological cycle and water availability. Moreover, the linkage between climatic changes and streamflow fluctuations is poorly documented in this area. Therefore, this study examined temporal trends in rainfall, temperature and runoff records of Kaduna River basin. Using appropriate statistical tools and participatory survey, trends in streamflow and their linkages with the climate indices were explored to determine their amplifying impacts on water availability and impacts on livelihoods downstream the basin. Analysis indicate variable rainfall trend with significant wet and dry periods. Unlike rainfall, temperature showed annual and seasonal scale statistically increasing trend. Runoff exhibit increasing tendency but only statistically significant on annual scale as investigated with Mann–Kendall trend test. Sen’s estimator values stood in agreement with Mann–Kendall test for all variables. Kendall tau and partial correlation results revealed the influence of climatic variables on runoff. Based on the survey, some of the hydrological implications and current water stress conditions of these fluctuations for the downstream inhabitants were itemized. With increasing risk of climate change and demand for water, we therefore recommend developing adaptive measures in seasonal regime of water availability and future work on modelling of the diverse hydrological characteristics of the entire basin.


2021 ◽  
Author(s):  
Ilaria Stendardo ◽  
Bruno Buongiorno Nardelli ◽  
Sara Durante

<p>In the subpolar North Atlantic Ocean, Subpolar Mode Waters (SPMWs) are formed during late winter convection following the cyclonic circulation of the subpolar gyre. SPMWs participate in the upper flow of the Atlantic overturning circulation (AMOC) and provide much of the water that is eventually transformed into several components of the North Atlantic deep water (NADW), the cold, deep part of the AMOC. In a warming climate, an increase in upper ocean stratification is expected to lead to a reduced ventilation and a loss of oxygen. Thus, understanding how mode waters are affected by ventilation changes will help us to better understand the variability in the AMOC. In particular, we would like to address how the volume occupied by SPMWs has varied over the last decades due to ventilation changes, and what are the aspects driving the subpolar mode water formation, their interannual variations as well as the impact of the variability in the mixing and subduction and vertical dynamics on ocean deoxygenation. For this purpose, we use two observation-based 3D products from Copernicus Marine Service (CMEMS), the ARMOR3D and the OMEGA3D datasets. The first consists of 3D temperature and salinity fields, from the surface to 1500 m depth, available weekly over a regular grid at 1/4° horizontal resolution from 1993 to present. The second consists of observation-based quasi-geostrophic vertical and horizontal ocean currents with the same temporal and spatial resolution as ARMOR3D.</p>


2021 ◽  
Author(s):  
Richard Dallison ◽  
Sopan Patil

<p>The impact of climate change on the hydrological cycle and catchment processes has been extensively studied. In Wales, such changes are projected to have a substantial impact on hydrological regimes. However, the impact on the water abstraction capability of key sectors in the country, such as hydropower (HP) and public water supply (PWS), is not yet fully understood. We use the Soil and Water Assessment Tool (SWAT) to generate future (2021-2054) daily streamflows under a worst-case scenario of greenhouse gas emissions (Representative Concentration Pathway 8.5) at two large catchments in Wales, the Conwy and Tywi. SWAT streamflow output is used to estimate the abstractable water resources, and therefore changes in the average generation characteristics for 25 run-of-river HP schemes across Conwy and Tywi and the total unmet demand for a single large PWS abstraction in the Tywi. This unmet PWS demand is assessed using the Water Evaluation And Planning (WEAP) system under increasing, static, and declining demand scenarios. Mann-Kendall trend analysis is performed to detect and characterise the trends for both sectors.</p><p>Results show greater seasonality in abstraction potential through the study period, with an overall decrease in annual abstraction volume due to summer and autumn streamflow declines outweighing increases seen in winter and spring. For HP, these trends result in a projected decline in annual power generation potential, despite an increasing number of days per year that maximum permitted abstraction is reached. For PWS, under all future demand scenarios, annually there is an increase in the number of days where demand is not met as well as the total shortfall volume of water. Our results suggest that currently installed HP schemes may not make optimal use of future flows, and that the planning of future schemes should take account of these to ensure the most efficient operation is achieved. Moreover, PWS supply sustainability is under threat and will require management and mitigation measures to be implemented to ensure future supplies. Overall, our study provides a novel perspective on the future water resource availability in Wales, giving context to management planning to ensure future HP generation efficiency and PWS sustainability.</p>


2022 ◽  
pp. 76-91
Author(s):  
Isaac Terungwa Terwase ◽  
Muhammad Yusuf ◽  
Abubakar Sambo Mohammed ◽  
Safwan Mikaila Sani

The Boko Haram conflict started in Nigeria from a city in the north-eastern part of the country known as Maiduguri in 2009 during the administration of President Umaru Musa Yar'Adua. It was a new thing to Nigeria considering the fact that the country was yet to witness terrorism and its activities. Boko Haram later continued after the death of President Yar'Adua, and they became stronger during the President Jonathan's administration. Boko Haram later transformed from an insurgent group into a terrorist group where they spread from Nigeria to other parts of African countries such as Chad, Niger, and Cameroon. This has it effects, impacts, and consequences on trade in Africa. The objective of this chapter is to draw the impact of terrorism on trade with specific attention to Nigeria and Chad.


2020 ◽  
Vol 48 (2) ◽  
pp. 1057-1069
Author(s):  
Radu POPESCU ◽  
Neculae ȘOFLETEA

The research carried out was aimed to assessing the phenological behavior of beech (Fagus sylvatica L.) in the southwestern area of the Carpathians, in submesothermal forest sites, differentiated from the majority mesothermal ones of this species. The data obtained may be used for predicting the phenological changes of the species, especially in the Carpathian area, under the future influence of expected climate change. Assessments for spring and autumn phenology (buds burst -BB and foliation, flowering and leaves senescence) were carried out on a transect with a difference in altitude of 1000 meters, in phenological research areas located at 200 m, 700 m and 1200 m. At each altitude level, 100 trees of I and II Kraft classes were phenologically characterized: 50 trees on the south-facing slope (sunny exposure) and 50 on the north-facing slope (shade exposure).The phenological data were interpreted in relation to climate data recorded in each area by a HOBO U23 Pro v2 sensor. The site conditions of submesothermal climate in the low altitude area led to DOY (day of the year) values below 100. The phenological differentiation of populations is evident in relation with the altitude, while at the same altitudinal level the influence of the exposure was much lower. The gradiental values by altitude sectors highlighted the nonlinearity of the development of foliation phenophase, the value being lower in the first 500 m, where the beech is under the impact of the submesothermal climate. It has been proven both the dependence of the foliation onset depending on the cumulation of temperatures in relation to the DOY moment and also on the values recorded throughout the vegetative rest. The altitudinal gradiental values resulting for flowering in the first and second altitudinal half of transect also differentiate the stands, but are lower than that resulting for BB. The leaves senescence has a delay of 1.8 up to 2.4 days per 100 meters altitude, and the length of the vegetation season is reduced more sharply in the upper half of the analyzed altitudinal transect. The sub-mesothermal climate could be involved in condensation of spring phenophases in the stands of the lower half of the researched area. Our data may be used for predicting the phenological changes, especially in the Carpathian area, under the expected climate change.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20180084 ◽  
Author(s):  
Erik van Schaik ◽  
Lars Killaars ◽  
Naomi E. Smith ◽  
Gerbrand Koren ◽  
L. P. H. van Beek ◽  
...  

The 2015/2016 El Niño event caused severe changes in precipitation across the tropics. This impacted surface hydrology, such as river run-off and soil moisture availability, thereby triggering reductions in gross primary production (GPP). Many biosphere models lack the detailed hydrological component required to accurately quantify anomalies in surface hydrology and GPP during droughts in tropical regions. Here, we take the novel approach of coupling the biosphere model SiBCASA with the advanced hydrological model PCR-GLOBWB to attempt such a quantification across the Amazon basin during the drought in 2015/2016. We calculate 30–40% reduced river discharge in the Amazon starting in October 2015, lagging behind the precipitation anomaly by approximately one month and in good agreement with river gauge observations. Soil moisture shows distinctly asymmetrical spatial anomalies with large reductions across the north-eastern part of the basin, which persisted into the following dry season. This added to drought stress in vegetation, already present owing to vapour pressure deficits at the leaf, resulting in a loss of GPP of 0.95 (0.69 to 1.20) PgC between October 2015 and March 2016 compared with the 2007–2014 average. Only 11% (10–12%) of the reduction in GPP was found in the (wetter) north-western part of the basin, whereas the north-eastern and southern regions were affected more strongly, with 56% (54–56%) and 33% (31–33%) of the total, respectively. Uncertainty on this anomaly mostly reflects the unknown rooting depths of vegetation. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


Sign in / Sign up

Export Citation Format

Share Document